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Objectives: The role of social media as a source of timely and massive information has become more
apparent since the era of Web 2.0. Multiple studies illustrated the use of information in social media
to discover biomedical and health-related knowledge. Most methods proposed in the literature employ
traditional document classification techniques that represent a document as a bag of words. These tech-
niques work well when documents are rich in text and conform to standard English; however, they are
not optimal for social media data where sparsity and noise are norms. This paper aims to address the lim-
itations posed by the traditional bag-of-word based methods and propose to use heterogeneous features
in combination with ensemble machine learning techniques to discover health-related information,
which could prove to be useful to multiple biomedical applications, especially those needing to discover
health-related knowledge in large scale social media data. Furthermore, the proposed methodology could
be generalized to discover different types of information in various kinds of textual data.
Methodology: Social media data is characterized by an abundance of short social-oriented messages that
do not conform to standard languages, both grammatically and syntactically. The problem of discovering
health-related knowledge in social media data streams is then transformed into a text classification prob-
lem, where a text is identified as positive if it is health-related and negative otherwise. We first identify
the limitations of the traditional methods which train machines with N-gram word features, then pro-
pose to overcome such limitations by utilizing the collaboration of machine learning based classifiers,
each of which is trained to learn a semantically different aspect of the data. The parameter analysis for
tuning each classifier is also reported.
Data sets: Three data sets are used in this research. The first data set comprises of approximately 5000
hand-labeled tweets, and is used for cross validation of the classification models in the small scale exper-
iment, and for training the classifiers in the real-world large scale experiment. The second data set is a
random sample of real-world Twitter data in the US. The third data set is a random sample of real-world
Facebook Timeline posts.
Evaluations: Two sets of evaluations are conducted to investigate the proposed model’s ability to discover
health-related information in the social media domain: small scale and large scale evaluations. The small
scale evaluation employs 10-fold cross validation on the labeled data, and aims to tune parameters of the
proposed models, and to compare with the stage-of-the-art method. The large scale evaluation tests the
trained classification models on the native, real-world data sets, and is needed to verify the ability of
the proposed model to handle the massive heterogeneity in real-world social media.
Findings: The small scale experiment reveals that the proposed method is able to mitigate the limitations
in the well established techniques existing in the literature, resulting in performance improvement of
18.61% (F-measure). The large scale experiment further reveals that the baseline fails to perform well
on larger data with higher degrees of heterogeneity, while the proposed method is able to yield reason-
ably good performance and outperform the baseline by 46.62% (F-Measure) on average.
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1. Introduction

Social media such as Twitter and Facebook are increasingly
being used as tools for real-time knowledge discovery relating to
social events, emerging threats, epidemics, and even product
trends [1,2]. For example, real time analysis of Twitter users’ tweet
content can be or is being used to detect earthquakes and provide
warnings [3], to identify needs (e.g., medical emergencies, food and
water shortages) during recovery from natural disasters such as
the Haiti Earthquake [4], track emergence of specific syndromic
characteristics of influenza-like illness [5], and collect epidemic-
related tweets [6].

The role of social media in biomedical domain has become
significant in recent years [7–13]. Researchers and physicians have
utilized social media data to (1) communicate and share informa-
tion between patients and health care decision makers, (2) develop
large scale, dynamic disease surveillance systems and (3) mining
biomedical and health-related information.

An immediate and direct use of social media in the biomedical
domain is a means for patients and professionals to communicate
and exchange information. Web 2.0 along with ubiquitous mobile
computing devices allows individuals to dynamically and seam-
lessly interact with each other in real time, regardless of their loca-
tions. PatientsLikeMe1 is a social network for patients that improves
lives and a real-time research platform that advances medicine. On
PatientsLikeMe’s network, patients connect with others who have
the same disease or condition, allowing them to track and share their
own experiences. Eijk et al. illustrated the use of Online Health Com-
munities (OHCs) for ParkinsonNet,2 a social network for Parkinson
disease patients whose participants (both patients and professionals)
use various types of OHCs to deliver patient-centered care [14].
Merolli et al. explored different ways that chronic disease sufferers
engage in social media in order to better tailor these online interven-
tions to individually support patients in specific groups [9]. Addition-
ally, Twitter, Facebook, and other social blogging services provide
conduits for patients and medical practitioners to collaborate,
exchange, and disseminate information through official broadcasting
channels/webpages or discussion groups [12,10,13,11,15].

Most popular social media providers such as Twitter and Face-
book allow their posts to be geo-located. These properties provide
researchers in the healthcare community the ability to monitor the
medical related emergences. Culotta proposed a methodology to
study the predictability of Twitter data on future influenza rates
[16]. A correlation of 95% was observed between the tweets con-
taining the flu keywords and the actual national health statistics.
A similar study was conducted by Corley et al. who found a high
correlation between the frequency of the tweets (weekly) contain-
ing influenza keywords and the CDC3 influenza-like-illness surveil-
lance data [17]. Bodnar et al. compared different regression-based
models for disease detection using Twitter, and discovered that the
SVM regression model gave the best correlation with the actual
CDC disease report [18]. Heaivilin et al. introduced Twitter as a
potential source for dental surveillance and research [19]. The find-
ings suggest that people who experience dental pain usually turn to
social network to seek comfort and advice from others who also suf-
fer from dental pain. In all such applications, systems are needed to
automatically, accurately, and efficiently identify and interpret
health-related content in short text ‘‘micro’’ messages.

Even though social media is high in noise due to the heterogene-
ity of the writing styles, formality, and creativity, such noise also
bears undiscovered wisdom of the crowd, and hence should not be
regarded as a threat, but an opportunity for discovering knowledge
1 http://www.patientslikeme.com/.
2 http://www.parkinsonnet.info/.
3 http://www.cdc.gov/flu/.
that can be useful in biomedical domains. Indeed literature illus-
trates rich research in mining biomedical and health related knowl-
edge in social media. Paul and Dredze utilized a modified Latent
Dirichlet Allocation [20] model to identify 15 ailments along with
descriptions and symptoms in Twitter data [21,22]. Cameron et al.
proposed a web platform PREDOSE (PREscription Drug abuse Online
Surveillance and Epidemiology), which aims to facilitate research in
prescription-related drug abuse practices using social media [23].
Greene et al. studied the quality of communication of the content
in Facebook communities dedicated to diabetes. They classified each
Facebook post into one of the 5 categories: Advertisements, Provid-
ing Information, Requesting Information, Support, and Irrelevant,
and found that roughly two third of the information is about sharing
diabetes management strategies [15]. Yang et al. proposed a method
utilizing association mining and Proportional Reporting Ratios to
discover the relationship between drugs and averse reactions from
the user contributed content in social media [24].

This paper presents a novel machine learning based methodology
that combines multi-aspect learners to make collective decisions in
order to discover health-related information in the heterogeneous
pool of social media. Such a system could prove useful to multiple
biomedical research and applications aiming to employ the power
of large-scale, realtime social media. Social media posts/comments
are usually represented as short textual expressions. We formulate
the problem as a text classification problem, where the objective is
to correctly classify health-related content, given a large, dynamic
stream of data. A message is said to be health-related if at least one
of these two following conditions is met:

� The message indicates its author has health issues; e.g. Fever,
back pain, headache. . .ugh!
� The message talks about someone else getting sick, or expresses

health concern; e.g. I completely understand, more than anyone!
Try a warm bath too. That always helped me w/ Pauly. & drinking
water.

The health-related content-identification problem is trans-
formed into the health-related short text classification, where a
system is given a short text message and asked to determine
whether it is health-related or not. Studies [25–27] show that tra-
ditional text classification approaches which represent a document
as a ‘‘bag of words’’ are not well suited for processing short texts, as
they do not provide sufficient word co-occurrence or shared
semantics for effective similarity measures. Specifically, traditional
techniques such as N-gram feature extraction limit the ability to
recognize high-discriminative terms that include health-related
keywords and/or obtain meaning from the topical semantics of
the entire text. We propose and test the efficacy of ensemble meth-
ods wherein multiple base classifiers that learn different aspects of
the data are used together to make collective decisions in order to
enhance performance of health-related message classification.

In an effort to mitigate the limitations of existing health-related
text mining methodologies, this work:

1. Proposes to use 5 heterogeneous feature types which represent
different aspects of semantics for identification of health-
related messages in social media. Parameter sensitivity is
studied to find the best parameter configuration and base
classifier for each feature type.

2. Explores the use of different ensemble methods that allow base
classifiers trained with different feature types to make collec-
tive decisions.

3. Validates the proposed classification algorithms using empirical
evaluation. Additionally, we strengthen the reasons for choos-
ing the proposed features by showing how each feature type
impacts the classification.

http://www.patientslikeme.com/
http://www.parkinsonnet.info/
http://www.cdc.gov/flu/
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4. Evaluates the proposed classification algorithms on large scale,
real world datasets, and shows that our proposed solutions do
not only perform well on real-world data, but also generalize
across multiple domains of social media with minimum
assumption on the specific social media characteristics.

The rest of the paper is organized as follows. Section 2 provides
background of the related works. Section 3 explains the character-
istics of the dataset we use in our experiments. Section 4 discusses
our proposed methods, including feature extraction along with
analysis on parameter sensitivity and ensemble techniques in
detail. Section 5 describes the evaluation of our proposed methods
against the baseline on both small labeled data and large scale
datasets. Section 6 concludes the paper.
2. Related works

The literature on text classification is extensive, hence we only
discuss works closely related to ours.

2.1. Automatic identification of health-related information

Two approaches have been widely used to identify health-
related content: keyword based and learning based methods. The
former requires a dictionary containing the relevant words. A mes-
sage is identified as relevant if it contains one or more keywords.
Ginsberg et al. demonstrated that a regression model of
influenza-like illness can be estimated using the proportion of
flu-related Google search queries over the same period. They
classified the query logs by detecting the presence of flu-related
keywords [28]. Their method was implemented in Google Flu
Trends,4 a Google based service providing almost real-time esti-
mates of flu activity for a number of countries around the world.
Culotta claimed that Twitter data yielded better prediction on the
actual flu rates than query logs, and proposed a methodology to cor-
relate the quantity of flu-related tweets, identified by flu-related
keyword detection, with the actual influenza-like-illness rates [29].
Corley et al. did a similar study on web blogs [17]. They identified
flu-related blog posts using keywords influenza and flu. Yang et al.
proposed to use association mining and the Proportional Reporting
Ratios the mine relationship between drugs and their averse reac-
tions in social media, which basically employ the co-occurrence fre-
quency of the drug names and averse reactions [24]. They identified
content containing the averse drug reactions by detecting the pres-
ence of the health-care keywords generated by applying Consumer
Health Vocabulary (CHV) [30]. The keyword matching based
approaches are simple to implement and do not consume much
computing resources; however, such approaches do not only fail to
capture keywords unknown to the dictionary, they also fail to deal
with polysemy words.

Other widely used approaches transform identification prob-
lems into classification problems and utilize machine learning
based classifiers to classify the data into classes. Traditional
machine learning based approaches for text classification first
trains a learner with a collection of labeled documents, then uses
the trained learner to classify unlabeled documents. Learning
based approaches solve the term disambiguation problems posed
by the keyword matching approaches as they are able to learn
some level of semantics of specific words from the surrounding
contexts in which they appear. Collier and Doan proposed an algo-
rithm for detecting disease-related tweets [5]. Specifically, the
algorithm categorizes a tweet into musculoskeletal, respiratory,
gastrointestinal, hemorrhagic, dermatological, or neurological
4 http://www.google.org/flutrends.
related ailment. Their algorithm first (1) filters tweets that contain
syndromic keywords defined in the BioCaster public health ontol-
ogy [31], and then (2) classifies the filtered messages into one of
the six predefined ailments using binary uni-grams as features.
Their problem is similar to ours, except that they aim to identify
tweets corresponding to specific ailments; while we address a
broader range of messages related to health issues. For example,
‘having a slight headache.’ would not fall into any ailment
categories in their proposed methodology as the message only
describes a general symptom (i.e. headache). In our work, we
aim to capture such messages as well since a large collective
knowledge of small-signal messages could reveal significant
insights into the emerging trends [2]. Aramaki et al. proposed to
use a Support Vector Machine based classifier to detect flu-related
tweets [32]. The machine is trained with unigrams collected within
the same proximity of the flu-related keywords. Paul and Dredze
address the same problem as ours and propose a machine learning
based classification algorithm used for identifying health-related
tweets [21]. Uni-gram, bi-gram, and tri-gram binary word features
are used to train a linear kernel SVM classifier. They further use the
collected tweets to mine public health information using a LDA-
like technique [22]. The parameters of the classifier are then tuned
to obtain 90.04% precision and 32.0% recall, since classifiers with
higher precision are preferred in their task which is to collect high
quality health-related tweets. Besides using traditional binary N-
gram features to train the classifier, which we point out later not
to be sufficient and accurate enough for social media settings, their
classification model was built and tuned on a small dataset of
roughly 5 thousands Twitter messages. Our large scale experi-
ments (see Section 5.7) reveal that their method does not adopt
very well when being used on real-world, highly diversified data.
Even though literature showed that N-gram features are sufficient
for text classification tasks, such features fall short when dealing
with document in social media domain.

2.2. Short message classification

The major differences between a short message or ‘‘microtext’’,
and a traditional document includes the length and the formality
of language. Classification algorithms that work for traditional doc-
uments may not succeed in the microtext domain due to the lower
dimension and higher noise characterizing the data. This subsec-
tion explores literature on short text classification in addition to
Section 2.1. Sriram et al. point out the limitation of bag-of-word
strategies for tweet classification, and propose 8F features, which
primarily capture the information about authors and reply-to users
[33]. While authorship is proved to be a potential source of infor-
mation, our dataset (see Section 3) does not have such information
available. Caragea et al. propose the system EMERSE for classifying
and aggregating tweets and text messages about the Haiti earth-
quake disaster [4]. They train a SVM classifier with the combina-
tion of 4 feature sets: uni-grams, uni-grams with Relief feature
selection [34], abstractions [35], and topic words generated by
LDA [20]. Since the first 2 feature sets are N-gram based, they
encounter similar limitations as our baseline. The other two fea-
ture sets are based on groups of terms, and would partially solve
the disambiguation problem, but not the keyword recognition
problem.

3. Datasets

3 Datasets are used in the experiments: a small Twitter dataset
(TwitterA), a large Twitter dataset (TwitterB), and a large Facebook
dataset. TwitterA is a labeled, almost balanced dataset and is
mainly used to experiment and tuning the configurations of the
classifiers. The other large datasets have natural distribution of

http://www.google.org/flutrends


5 http://www.csie.ntu.edu.tw/cjlin/libsvm/.
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the health-related messages, and are used to test the ability to gen-
eralize to real world, large scale data of the proposed methods.

3.1. TwitterA dataset

For consistency and scientific comparison, we use the same
dataset as [21] which consists of 5,128 manually labeled tweets.
This dataset is used for the small scale experiments employing
the 10-fold cross validation protocol, and for training classifiers
for the large scale experiments. Since we want to minimize the
assumption about the properties of social text, all hashtags, retwe-
ets and user information are removed and only textual content is
kept. Future steps of our research involve expanding the data
sources to include other kinds of social media (such as Facebook,
Google+, blogs, etc.), which may not have hashtags and other Twit-
ter-like features, thus we focus on common features (such as tex-
tual information and timestamps) to develop a generic algorithm.
Each tweet is a tuple of tweet ID and its textual content, and is
labeled as either positive or negative. A message is positive if it is
health related, and negative otherwise. The dataset contains 1832
(35.73%) positive and 3296 (64.27%) negative instances.

We note that although the size of the dataset may not com-
pletely capture the noise and lexical diversity presented in social
media, the hundreds of millions tweets generated each day con-
strain the viability of established ground truth data of substantial
proportion. Examining the literature, comparable or smaller sizes
of manually labeled tweets are often used to validate the models
proposed in many reputable and high-impact works such as
[3,33,36,37]. Moreover, the dataset has much higher distribution
of positive samples than real-world data (i.e. 35.73% vs. 1.34% in
real-world Twitter data, see Section 3.2). This would allow the clas-
sifiers to learn more information about the positive class, which is
of interest here.

3.2. TwitterB dataset

The TwitterB dataset comprises roughly 700 million public
tweets in the United States during the period of 18 months from
April 2011 to September 2012. These tweets were collected at ran-
dom, hence representing a pseudo-uniform distribution of the
overall tweets without biases to any topics. Only the tweet ID, time
stamp, and textual information of each tweet are extracted. The
extracted information is stored in compressed text files, yielding
the total size of 25 GB. A random sample of 10,000 tweets from this
dataset was manually labeled by 5 graduate students. We found
134 (1.34%) health-related messages. Unlike the TwitterA dataset,
the TwitterB dataset has a natural distribution of health-related
messages and is used for the large scale experiment (Section 5.7).

3.3. Facebook dataset

The Facebook dataset comprises 1,348,800 Timeline statuses and
3,541,772 associated comments of 113 participant Facebook users
and their friends (a total of 60,776 Facebook users). Each partici-
pant user was asked for permission to collect their and their
friends’ Timeline posts. All identification was removed prior to
storage. All the Facebook data will be destroyed upon acceptable
progress of our research. Each Timeline status message and com-
ment is treated as an individual message, from which the ID, time-
stamp, and textual information are extracted, for consistency with
the other datasets. The final Facebook data contains roughly 5 mil-
lions messages, yielding 155 MB of size. A random sample of
10,000 messages was manually labeled by 5 graduate students,
which reveals 107 (1.07%) health-related messages. Similar to the
TwitterB dataset, this dataset is used for the large scale experiment
(Section 5.7).
4. Methodology

Even though Twitter and Facebook data is used to verify our
model, the expansion into diverse types of social media such as
web blogs and Google+ provides a broader foundation for public
health surveillance. The need to accommodate heterogeneous
types of data means that it is important for us to design a method
that easily generalizes across data sources with different
properties.

We propose to combine 5 heterogeneous base classifiers,
selected from different families of classification algorithms and
shown to be state-of-the-art for text classification, each of which
is trained with a different feature type explained in Section 4.2.
For each feature type, 5 base classifiers listed in Section 4.1 are
tried using 10-fold cross validation with different feature
extraction parameter configurations. The base classifier and
parameter configuration that yield the highest F-measure is chosen
for ensemble experiments outlined in Section 4.3. Table 1 lists the
abbreviations used in this paper for quick reference.

4.1. Base classification algorithms

On each feature type, we employ 5 classification algorithms
drawn from different classification families namely:

Random Forest (RF) [38] is a tree-based ensemble classifier
consisting of many decision trees. Random Forest is known for
its resilient embedded feature selection algorithm, allowing it to
feasibly learn from high-dimensional data such as text data. We
use 100 trees for each RF classifier as suggested by [39].

Support Vector Machine (SVM) [40] is a function based classi-
fier built upon the concept of decision planes that define decision
boundaries. In our experiment we use the linear kernel SVM with
C = 1.0. SVM has long been known for superior performance in text
classification with word features [41].

Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) [42] is a rule-based classifier which implements a prop-
ositional rule learner. For each RIPPER classifier, we set the number
of folds to 3, and the minimum weight of instances to 2.0.

Bernoulli NaiveBayes (NB) [43] is a simple probabilistic classi-
fier implementing Bayes’ theorem. NaiveBayes has been shown to
perform superior in some text classification tasks such as spam fil-
tering [44].

Multinomial NaiveBayes (MNB) [45] implements the Naive
Bayes algorithm for multinomially distributed data, and is one of
the two classic Naive Bayes variants used in text classification
(where the data is typically represented as word vector counts).
McCallum and Nigamcite [46] found Multinomial NaiveBayes to
perform better than simple NaiveBayes, especially at larger
vocabulary sizes.

We use LibSVM5 implementation for SVM, and Weka6

implementation for the other classifiers.

4.2. Feature sets

This section discusses the extraction of the 5 feature sets
representing different views of the dataset.

4.2.1. N-gram features (NG)
N-gram features have been used extensively in text classifica-

tion to learn word patterns in the training data. Let a document
d be an ordered set of terms. An N-gram is a sequence of contigu-
ous N terms in d. Here we represent a document with a union of its

http://www.csie.ntu.edu.tw/cjlin/libsvm/
http://www.cs.waikato.ac.nz/ml/weka/


Table 1
List of abbreviations.

Type Abbr. Description

Classification
algorithm

MNB Multinomial NaiveBayes
NB Bernoulli NaiveBayes
RF Random Forest
RIPPER Repeated Incremental Pruning to Produce

Error Reduction
SVM Support Vector Machine

Feature extraction
parameter

Clean Whether to remove punctuation and
stopwords, and stem the message

N Max number of consecutive terms to form
grams

Stem Stemming (whether to apply Porter’s
stemming algorithm to the message)

Vocab Vocabularies
W Weighting schemes (Binary, Frequency, TFIDF)
Z Number of topics
C Maximum number of terms in a compound

Ensemble
technique

MS Multi Staging
RevMS Reverse Multi Staging
VOTE Majority Voting
WPA Weighted Probability Averaging

Feature type CB Combined Features
DC Dictionary Based Compound Features
NG N-Gram Features
ST Sentiment Features
TD Topic Distribution Features

7 http://gemina.igs.umaryland.edu.
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uni- to N-grams. Three different weighting schemes are explored:
Binary, Frequency, and TF-IDF. Let S be the set of training docu-
ments, V ¼ hv1; . . . ; vMi be the vocabulary extracted from S; t be
the test document, and FðtÞ ¼ hf1; . . . ; fMi be the feature vector of
the test document t. We define the weighting schemes as follows:

f bin
i ¼

1 if v i 2 t and v i 2 V

0 otherwise

�

f freq
i ¼ TFðv i; tÞ

f tfidf
i ¼

TFðv i ;tÞ
MaxðTFðw;tÞ:w2tÞ � log Sj j

1þ s2S:v i2sj j if v i 2 t

0 otherwise

(

TFðw;dÞ is the number of occurrences of term w in document d.
Since social media messages do not conform with standard English,
we also study how data cleaning and stemming have effects on the
performance. Table 2 lists all the configuration parameters and their
possible values for the NG feature extraction. Note, the features
used in the baseline method proposed by Paul and Dredze [21] uses
the hclean ¼ F; stem ¼ F;N ¼ 3;W ¼ binaryi configuration.

4.2.2. Dictionary based compound features (DC)
As mentioned in Section 2.1, two drawbacks of N-gram features

are (1) words with multiple meanings are treated the same (Ex.
cold can be used in both disease or temperature contexts) and
(2) important keywords are treated as normal words (Ex. Xero-
derma pigmentosum is a disease name, but may not be identified
as a discriminative feature by N-gram approaches since it is a rare
disease and appears in only a few documents). Figueiredo et al.
[47] propose compound features (c-features) for text classification.
A compound of C terms is a group of C terms that occur in the same
document. A compound with C ¼ 2 is a generalized definition of
term co-occurrence. Like NG features, we represent a document
with the union of uni- to N-grams.

Compound features address the disambiguation problem, since
they can identify different sets of term used in different scenarios.
However, such features would not be able to address the keyword
recognition problem as they cannot interpret the meaning of each
term. Another problem of using full compound features is that the
feature set can grow very large once all possible compounds are
enumerated.

To overcome these challenges, we propose a feature selection
strategy for the compound feature extraction, which we call Dictio-
nary-based compound features (DC). Our DC feature extraction
algorithm first generates all possible compounds from a document.
Next, a compound that contains at least one term defined in the
dictionary is kept. In our experiment we use 3 vocabularies: dis-
ease, symptom, and anatomy. We obtain such vocabularies from
the Gemina project.7 The disease and symptom vocabularies contain
human disease and symptom names respectively, and are used due
to the fact that there is a high chance that authors of the messages
use these terms to identify their own or others’ health conditions
(i.e. ‘I think I’m havin an asthma attack. . ..wtf am I tweeting?’ and ‘feel-
ing better. still have a bit of a headache though.’). The anatomy
vocabulary contains words used to name physical parts of a human
body, and is used because the existence of body organ words may
help disambiguating health-related terms (i.e. ‘i’ll throw pillows from
my couch here. . .my knees are burning’. In this example, burning can
mean either very hot or painful. The presence of the word knees may
help identify that burning actually has the latter meaning.). Table 3
lists all the configuration parameters and their possible values.

4.2.3. Topic distribution features (TD)
The intuition behind topic modeling is that an author has a set

of topics in mind when writing a document. A topic is defined as a
distribution of terms. The author then chooses a set of terms from
the topics to compose the document. With such assumption, the
whole document can be represented using a mixture of different
topics. Topic modeling has also been successfully used to reduce
the dimension of a document (where the number of dimensions
is equal to the number of topics). Topic modeling strategies have
also been applied in a variety of applications such as citation
recommendation [48], document annotation [49,50], and text clas-
sification [4,51,52]. We employ the Latent Dirichlet Allocation
algorithm for modeling topics in our work. We briefly describe
the algorithm here for quick reference.

4.2.3.1. Latent Dirichlet Allocation. In text mining, the Latent
Dirichlet Allocation (LDA) [20] is a generative model that allows
a document to be represented with a mixture of topics. Past liter-
ature such as [53–55,27] demonstrates successful usage of LDA to
model topics from given corpora. The basic intuition of LDA for
topic modeling is that an author has a set of topics in mind when
writing a document. A topic is defined as a distribution of terms.
The author then chooses a set of terms from the topics to compose
the document. With such assumption, the whole document can be
represented using a mixture of different topics. LDA serves as a
means to trace back the topics in the author’s mind before the
document is written. Mathematically, the LDA model is described
as follows:

P wijdð Þ ¼
XjZj
j¼1

P wijzi ¼ jð Þ � Pðzi ¼ jjdÞ: ð1Þ

PðwijdÞ is the probability of term wi being in document d. zi is the
latent (hidden) topic. jZj is the number of all topics, which needs
to be predetermined. Pðwijzi ¼ jÞ is the probability of term wi being
in topic j. Pðzi ¼ jjdÞ is the probability of picking a term from topic j
in the document d.

Essentially, the aim of LDA model is to find PðzjdÞ, the topic
distribution of document d, with each topic described by the
distribution over all terms PðwjzÞ.

http://gemina.igs.umaryland.edu


Table 2
Parameters for NG feature extraction.

Param. Description Possible
values

Clean Whether to remove punctuation and lowercase the
message

T, F

Stem Whether to apply Porter’s stemming algorithm to
the message

T, F

N Max number of consecutive terms to form grams 1, 2, 3
W Weighting schemes Binary, freq,

tfidf

Table 3
Parameters for DC feature extraction.

Param. Description Possible values

Stem Whether to apply Porter’s stemming
algorithm to the message

T, F

Vocab Vocabularies used Disease, symptom,
anatomy, all

N Max number of consecutive terms to form
grams

1, 2, 3

C Maximum number of terms in a compound 1, 2
W Weighting schemes Binary, freq, tfidf

Table 4
Parameters for TD feature extraction.

Param. Description Possible values

Clean Whether to remove punctuation and
stopwords, stem the message

T, F

Z Number of topics 50, 100, 200, 400,
600, 800, 1000

Table 5
Features used in ST feature extraction, divided into two groups: physical and
emotional based.

Grp Feature name Description

Phys num_diseasewords Number of disease terms
ratio_num_diseasewords Ratio of disease terms to all terms
num_symptomwords Number of symptom terms
ratio_num_symptomwords Ratio of symptom terms to all terms
num_anatomywords Number of anatomy terms
ratio_num_anatomywords Ratio of anatomy terms to all terms
num_healthwords Number of health-related words
ratio_num_healthwords Ratio of health-related words to all

terms

Emo. positive_emotion Positive Emotional Level (1–5)
negative_emotion Negative Emotion Level (1–5)
num_pos_emoticons Num positive emoticons, e.g. :), (:])
num_neg_emoticons Num negative emoticons, e.g. : (, =(
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After the topics are modeled, we can assign a distribution of
topics to a given document using a technique called inference
[56]. A document then can be represented by a vector of numbers,
each of which represents the probability of the document belong-
ing to a topic:

Inferðd; ZÞ ¼ hz1; z2; . . . ; zQ i; jZj ¼ Q ; ð2Þ

where Z is a set of topics, d is a document, and zi is a probability of
the document d falling into topic i.

Here we use topic distribution to represent a document. Since a
topic is represented by a group of weighted terms, one can think of
a set of topics as a form of compound features, where the weighted
terms in a topic represent the components in a compound, and
hence we hypothesize that using topic distribution as features
can address the term disambiguation problem. For example, the
term cold may be the top terms in two topics; one is tempera-
ture-related, and the other sickness-related.

In our work, we model topics from the training documents
using LDA algorithm implemented in MALLET,8 a MAchine Learning
for Language Toolkit, with 3000 maximum iterations and using Gibbs
sampling. We obtain the topic distribution for each test document
using the inference algorithm proposed by [56]. Table 4 lists all
the configuration parameters for TD feature extraction.
4.2.4. Sentiment features (ST)
Our proposed sentiment features can be divided into two

groups: physical and emotional based. The physical based ST
features quantify the explicit illness by measuring frequency of
health related keywords in each document. We use the same sets
of vocabularies as in Section 4.2.2 for health-related keywords.
The emotional based features measure the level of positive and
negative emotions in the message, using the SentiStrength algo-
rithm proposed by Thelwall et al. [37]. Table 5 lists all the features.

Our physical based ST features also serve as a dimension reduc-
tion of the DC features (with C ¼ 1). Hence, such features have the
potential to address the keyword recognition problem as they
capture the frequency of highly relevant keywords. We also aim
to investigate whether emotional based ST features can be
8 http://mallet.cs.umass.edu/.
discriminative as social messages are contaminated with emotions.
All the configuration parameters are listed in Table 6.

4.2.5. Combined features (CB)
Having a classifier that learns all the aspects of the data may be

helpful when combined with other one-aspect classifiers. We
create such an overall classifier by training a base classifier with
combined features generated by merging all the four feature sets
discussed above into a single feature set.

4.3. Ensemble methods

In this subsection, we explain the motivation for combining
base classifiers and discuss the choices of ensemble methods.

4.3.1. Preliminary study and observations
We replicated the feature set used by Paul and Dredze [21] on

the original dataset and 10-fold cross validated it with a SVM
classifier, which yields precision of 76.68%, recall of 47.63%, and
F-measure of 58.76% (we later use these classification results as a
baseline). In post hoc examination we observed that many of the
misclassifications had the following characteristics:

Keyword Recognition Problem. Messages containing highly
discriminative health-related words such as swine, chill, and
burn are classified as non-health related. E.g. yep he’s fine. . .was
only a mild case of the swine.
Term Disambiguation Problem. Messages containing highly
discriminative health-related words used in a non-health-
related context are classified as health-related. E.g. This is sick,
it’s snowing again.: – It’s like i am living in Russia.

Additionally, we trained 4 classifiers based on DC, TD, ST, and
DC–TD–ST (combined) feature sets (see Section 4.2), respectively,
and examined the classification results. The magnitude of overlaps
between the misses (false positives + false negatives) produced by
the classifier trained with the baseline feature set and the hits (true
positives + true negatives) produced by the DC (7.21%), TD (9.26%),
ST (10.82%), DC–TD–ST (9.95%) based classifiers as seen in Table 7

http://mallet.cs.umass.edu/


Table 6
Parameters for ST feature extraction.

Param. Description Possible values

Stem Whether to apply Porter’s stemming algorithm
to the message

T, F

N Max number of consecutive terms to form
grams

1, 2, 3

Type Types of features to include Physical,
emotional, both

Table 7
Overlaps between misclassifications (misses) of the baseline and correct classifica-
tions (hits) of the classifiers trained with proposed feature sets.

FP \ TN (%) FN \ TP (%) Misses \ Hits (%)

DC 4.58 2.63 7.21
TD 6.73 4.09 10.82
ST 6.63 2.63 9.26
DC–TD–ST 5.17 4.78 9.95
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suggests that the addition of these features may potentially
increase overall performance of social media message classification.

4.3.2. Choices of ensemble methods
The 5 base classifiers trained with different feature types are

combined using standard ensemble methods listed below:

Majority Voting (VOTE) Each classifier outputs either a ‘yes’ or
‘no’. The final outcome is the majority vote of all the classifiers.
Weighted Probability Averaging (WPA) Each classifier is given
a weight, where the sum of all weights is 1. Each classifier out-
puts a probability estimate of the positive class. The final output
is the weighted average of all the classifiers.
Multi Staging (MS) Classifiers operate in order. If a classifier
says ‘yes’, the final output is yes; otherwise the instance in
passed to the next classifier to decide.
Reverse Multi Staging (RevMS) Similar to the MS technique,
except that an instance is passed to the next classifier if the
prior classifier says ‘yes’.

For the VOTE, MS, and RevMS methods, each base classifier clas-
sifies an instance as positive if the probability estimate is equal to
or greater than the probability cutoff, and negative otherwise. For
the WPA method, an instance is classified as positive if the final
probability estimate is equal to or greater than the probability
cutoff, and negative otherwise. We use 10-fold cross validation to
validate the classification performance. A validation set of 10% is
held-out of each training fold for setting probability cutoff and
selecting the weights for WPA based classifiers.

5. Experiment, results, and discussion

5.1. Training base classifiers

For each feature type, all the parameter configurations are 10-
fold cross validated on the dataset TwitterA using the 5 different
base classifiers listed in Section 4.1. The parameters and probabil-
ity cutoff are tuned with the 10% validation data held-out of each
training fold. In order to tune the probability cutoff, we scan
through different cutoff values with an increment of 0.01, and
choose the one that results in the best F1 when tested with the
held-out data. Note that this operation can be cheaply carried
out, since the probability score of each test instance is already
pre-computed. The best combination of the parameter configura-
tion and base classifier in terms of F-measure is chosen. Parameter
sensitivity is also investigated. The performance of the best
configuration of each feature type summarized in Table 8.

5.1.1. NG based classifier
SVM is chosen for the NG feature type with configuration

hclean ¼ T; stem ¼ T;N ¼ 2;W ¼ tfidf i, with F-measure of 68.19%.
To study the parameter sensitivity of the NG feature extraction,
we investigate (1) the effects of document preprocessing and (2)
how different weighting schemes affect the performance (F-mea-
sure) of the SVM classifier. Fig. 1 shows the results as a function
of the maximum size of grams (N). Fig. 1(a) compares the
performance of the feature sets with different clean and stem

parameters. According to the results, cleaning and stemming the
data lead to higher quality of the feature sets. Fig. 1(b) compares
the results of NG feature extraction with different weighting
schemes. It is clearly seen that features with TFIDF weight outper-
form the other weighting schemes.

5.1.2. DC based classifier
A SVM classifier with the configuration hstem ¼ true;

vocab ¼ all;N ¼ 1;C ¼ 2;W ¼ tfidf i yields the best F-measure
(56.47%). Fig. 2 shows the parameter sensitivity analysis (F-mea-
sure) as functions of the maximum size of grams (N) on the SVM
classifier. Fig. 2(a) compares the performances when different
vocabularies are used. It is evident that combining all the three
vocabularies yields the best results. Note that the symptom vocab-
ulary gives the best results among individual vocabulary sets, this
is because a large number of sickness-related tweets only talk
about symptoms (headache, stomachache, sore throat, etc.) with-
out mentioning the causing disease names. Fig. 2(b) compares
the results achieved with different weighting schemes. First point
to note, the performances of all the weighting schemes decrease
as N increases. This is because compounds with bigger grams tend
to generate sparse and idiosyncratic features. Similar to the NG fea-
tures, the TFIDF weighting scheme outperforms the others.

5.1.3. TD based classifier
Our results show that the configuration hclean ¼ F; Z ¼ 200iwith

a Random Forest classifier yields the best F-measure (54.50%). As
part of the parameter impact on the RF classifier, we vary the num-
ber of topics, and also model topics from both ‘cleaned’ and
‘uncleaned’ datasets. Fig. 3 shows that the optimum number of top-
ics is 200. Too few topics may lead to broad topics, hence low dis-
criminative power; whereas, too many topics can result in
spurious, meaningless topics consisting of idiosyncratic word com-
binations. An unexpected research finding is that uncleaned data
gives a better performance, contrasting with the analysis of the
NG, DC, and ST features which agree that cleaning the data in the
preprocess step helps remove noise and boost the performance.

5.1.4. ST based classifier
A RIPPER classifier with the configuration hstem ¼ T;N ¼ 2;

type ¼ bothi yields the best F-measure (51.08%). Fig. 4 shows the
results from varying type and stem parameters as a function of
the maximum size of grams (N) when tested with a RIPPER classi-
fier. From Fig. 4(a), it is interesting to see that the emotional-based
features do not significantly help to increase the performance. This
is because most Twitter users who tweet about their sicknesses do
not always express negative feelings. Oftentimes, they make the
messages sound humorous by adding positive emotions or use
positive tones, e.g. GWS ya bang:P T Oh no I’m sick! Gotta

use some rest:) LOL

5.1.5. CB based classifier
The combined features include all the previous 4 feature types

generated with the chosen configurations mentioned earlier. The



Table 8
10-fold classification performance of the baseline, proposed base and ensemble classifiers, along with average training time and results from the tests of statistical significance on
the dataset TwitterA. Pr %, Re %, and F1 % denote percentage precision, recall, and F-measure respectively. r (F1) denotes the standard deviation of the F-measure of the 10-fold
cross validation. ATT(s) denotes average training time in s.

Classifier Pr % Re % F1 % DF1 % r (F1) ATT (s) p-Value
(McNemar’s test)

Significant (McNemar’s
test, a = 0.05)

p-Value (5 � 2 CV
t test)

Significant (5 � 2 CV t test,
a = 0.05)

Baseline 76.68 47.63 58.76 0.00 0.029 493.6 – – – –
NG 75.65 62.06 68.19 9.43 0.0292 124.1 0.16214 No 0.20255 No
DC 73.77 45.74 56.47 �2.29 0.0221 31.4 0.04331 Yes 0.02746 Yes
TD 70.48 44.43 54.50 �4.26 0.0149 23.7 0.00019 Yes 0.10096 NO
ST 55.87 47.05 51.08 �7.68 0.022 1.1 <0.00001 Yes 0.01225 Yes
CB 85.07 57.29 68.47 9.71 0.0276 1252.6 0.02361 Yes 0.00087 Yes
VOTE 77.32 65.24 70.77 12.01 0.0258 1947.77 0.1158 No 0.00062 Yes
WPA 80.45 74.52 77.37 18.61 0.029 1969.65 0.00639 Yes 0.00174 Yes
MS 56.51 91.93 69.99 11.23 0.0287 1976.42 0.00011 Yes 0.39846 No
RevMS 90.08 37.96 53.41 �5.35 0.0461 1946.23 0.02195 Yes 0.71431 No

Fig. 2. Parameter comparison of DC feature extraction as the function of maximum
gram size (N).

Fig. 1. Parameter comparison of NG feature extraction as the maximum size of
grams (N).
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5 base classifiers are tried and SVM is found to perform the best
with F-measure of 68.47%.
5.2. Small scale experiments

We evaluate each ensemble method using 10-fold cross valida-
tion on the labeled dataset TwitterA, using standard precision,
recall, and F-measure (F1) as the evaluation metrics [57]. Unlike
existing approaches in the literature [21] in which the quality of
the retrieved data is more important than the amount, we aim to
apply our algorithm in disease surveillance situations where the
ability to detect non-obvious health-related messages (e.g. ‘‘I’m
not feeling good today, and prolly can’t go to class.’’) is also impor-
tant. Hence, we treat both precision and recall as having equal
importance, and F-measure is used to mainly compare the results
from each method.



Fig. 3. Parameter comparison of TD feature extraction as the function of number of
topics (Z).

Fig. 5. A compete run of our best method (WPA) against the baseline on both the
TwitterB and Facebook datasets captured during the period of 18 months from April
2011 to September 2012.
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The weight vectors used in the WPA method, the orderings of
base classifiers used in the MS and RevMS methods, and the prob-
ability cutoff are tuned using 10% held-out data of the training set
(the other 90% is used to train the base classifiers).

We compare our proposed methods with the baseline features
used in related works trained with a SVM classifier tuned to
achieve the best F-measure. Table 8 lists the results (in terms of
precision, recall, F-measure, and F-measure improvement over
the baseline) of each ensemble strategy, along with other base clas-
sifiers and the baseline classifier.
Fig. 4. Parameter comparison of ST feature extraction as the function of maximum
gram size (N).
The best performance in terms of F-measure is yielded by the
WPA ensemble method. This method gives some weight to all the
base classifiers learning different aspects of the dataset. The MS
method gives the best recall of 91.93%. The RevMS yields the best
precision of 90.08%. Since we treat precision and recall as equal
important, we conclude that the WPA ensemble method works best
for our task. This might be because the WPA method allows all the
base classifiers to make partial quantitative contribution to the
final decision, hence allowing the different semantic aspects of
the data to be effectively combined, as opposed to the other
ensemble methods whose some base classifiers may be ignored.
These results agree with a prior study of ensemble classification
by Kittler et al. which found that the sum rule (which is a special
case of the WPA with equal weights) outperformed other ensemble
methods (i.e. multi-staging, product, maximum, median, and min-
imum rules) on the identity verification and the handwritten digit
recognition tasks [58].

5.3. Tests of statistical significance

Two tests of statistical significance are performed to understand
the statistical difference between each proposed method and the
baseline: McNemar’s Chi-Square Test [59] and 5 � 2 CV Paired t
Test [60]. These two tests are chosen due to the reported low type
I error by Dietterich when used to compare two supervised classi-
fication learning models [60]. Here, the null hypothesis is that each
proposed model is identical to the baseline model, which is
rejected if the calculated p-value is smaller than the significance
level a ¼ 0:05.

5.3.1. McNemar’s Chi-Square Test
To apply McNemar’s test [61], the data S from the dataset Twit-

terA is randomly divided into a training set R (90%) and the test set
T (10%). The baseline and each of the proposed models are trained
using the data from R, and tested on the data from T. For each
proposed algorithm fA, the classified results are recorded in a con-
tingency table against the baseline fB:
Number of test instances
misclassified by both fA and
fB (n00)
Number of test instances
misclassified by fA, but not fB

(n01)
Number of test instances
misclassified by fB, but not
fA (n10)
Number of test instances
misclassified by neither fA nor
fB (n11)
Under the null hypothesis the two algorithms should have the
same error rate (i.e. n01 = n10). McNemar’s test is based on a v2 test
with 1 degree of freedom and is calculated as follows:
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v2 ¼ ðjn01 � n10j � 1Þ2

n01 þ n10
ð3Þ

The above equation incorporates a continuity correction term
(i.e. the �1 in the numerator) to account for the fact that the
statistic is discrete while v2 distribution is continuous [60].

5.3.2. 5 � 2 CV Paired t test
McNemar’s test has a drawback when dealing with small data-

sets: it does not measure the variability in choosing the training
sets, which can significantly affect the performance of the classifi-
cation models. To mitigate such an issue, Dietterich proposed the
5 � 2 cross validation paired t test which performs five replications
of twofold cross validation. In each replication, the dataset TwitterA
is randomly divided into two equal subsets, S1 and S2. For each
proposed model fA and the baseline fB, the models are trained on
each set and tested with the other set. This produces four error

estimates: pð1ÞA and pð1ÞB (trained on S1 and tested on S2) and pð2ÞA

and pð2ÞB (trained on S2 and tested on S1). Let pð1Þ ¼ pð1ÞA � pð1ÞB ,

pð2Þ ¼ pð2ÞA � pð2ÞB , and �p ¼ ðpð1Þ þ pð2ÞÞ=2, the estimated variance s2

is defined as:

s2 ¼ ðpð1Þ � �pÞ2 þ ðpð2Þ � �pÞ2 ð4Þ

The 5 � 2 CV ~t statistic is defined as follows:

~t ¼ pð1Þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5

P5
i¼1s2

i

q ð5Þ

where s2
i is the calculated s2 of the replication i, and pð1Þ1 is the pð1Þ of

the first replication. Under the null hypothesis, ~t has approximately
a t distribution with 5 degrees of freedom [60].

5.3.3. Analysis of statistical significance tests
The p-values of the McNemar’s Chi-square and 5 � 2 CV paired t

tests are reported in Table 8, along with the significance interpre-
tations using a ¼ 0:05 (i.e. YES or NO). Both tests agree that the
performance of DC, ST, CB, and WPA models are statistically signif-
icantly different from the baseline. It is interesting to see that the
NG method is not reported significantly different from the baseline
by both tests. This may be because both the methods rely on the N-
gram features, which result in similar classification results.

5.4. Misclassification analysis

100 false positive and 100 false negative instances misclassified
by the best proposed method (i.e. WPA), are randomly selected and
analyzed to determine the sources of classification error. We found
that the false positive samples can be classified into one of the three
categories based on their characteristics, as listed below:

1. The health-related keywords are presented but used in the
non-health related context. (59%) E.g.:
� my laptop is kinda choking every 2 s! gonna install

UBUNTU 1.10! any tip or suggestion?

Note that is type of error is also one of the two main weaknesses
posed by the baseline. Even though error of this type is still produced
by the proposed WPA method, the magnitude is much smaller.
2. The message provides health related information in a sub

context, but the super context is non-health related. (21%)
E.g.:
� I got some facebook heat for my seemingly progres-

sive breast cancer statement. seems to me that people

DO want and end to 2nd Base

3. The message is mislabeled. (20%) Some health related messages
are mislabeled as non-health related. This can happen due to
both accidents and misunderstanding of the labellers. E.g.
� Rain, sick, in bed sounds good til work

Analyzing the 100 false negative samples, we also found that the
error can be classified into four categories:

1. The health-related information is small, hence may produce
weak signals, compared to the surrounding context. (39%)
E.g.:
� I’m going to have my tuition at 10.30 & I am sick.

Well, it isn’t that i love studying. It’s just that

the $ is given. I HAVE TO GO!

Though the word sick can imply that the poster is sick. However,
such a word has also extensively been used in other non-health
related context that the classifier may treat such a word as a weak
signal. Especially when the health related content is among non-
health related content, the signal can be impeded by the surround-
ing context.
2. The message mentions health related content which can be

identified from an uncommon keyword. (29%) E.g.:
� KFMA Day in the Old Pueblo. . .might have a serious

sunburn tomorrow. But Switchfoot is here!:)

This problem would have been corrected by the DC features if the
keyword is known to the vocabulary. Note that sunburn is a type of
skin inflammation; however, the vocabulary that we use to gener-
ate the DC features do not contain such a word. As a result, the clas-
sifier may not be aware that sunburn implies health-related
information.
3. The message is mislabeled. (23%) E.g.:
� Hey pregnant chick smoking in front of the burrito

place, just how do you find a brand classy enough

for ya? This example message is not health related, but
was labeled as positive.

4. Other. (9%) We are not able to find common characteristics
among these misclassified messages.

5.5. Importance of each feature type

Our results show that the WPA method, wherein each base clas-
sifier is given some decision weight, yields the best performance.
This section further attempts to assess the importance of each base
classifier when making collaborative decisions. We analyse the
results of the WPA classifier from the first fold of the 10-fold cross
validation performed in Section 5.2. The best performance is
yielded by the weight vector hNG ¼ 0:1;DC ¼ 0:2; TD ¼ 0:1;
ST ¼ 0:1; CB ¼ 0:5i with 74.76% precision, 68.93% recall, and
71.88% F-measure. The CB classifier is given most weight due to
having the most extensive view of the data. The DC classifier is
given a twice higher weight compared to TD and ST classifiers since
it addresses both the problems posed by the baseline, while the
others address only one problem.

5.6. Effect of proposed feature sets

Each of our feature set reflects a different view of the dataset–
the NG features reflect the word patterns used in each document,
the MC features capture the semantics of the health related terms
by capturing the usage of terms appearing together in the same
document, the TD features extract topical semantics of the docu-
ment, and the ST features capture the sentiment semantics of doc-
ument in terms of level of illness and emotional variants.
According to the results in Table 8, combining all the proposed fea-
ture sets results in a better classification. This is because classifiers
trained with different views of the dataset can catch the errors of
the others. In this subsection, we investigate how each of our pro-
posed feature types increases the information learned by the base-
line features.



Table 9
Performance impact of each proposed feature set on the baseline feature set.

Feature set Pre% Rec% F% DF%

Baseline 76.68 47.63 58.76 0.00
Baseline-NG 62.96 61.32 62.13 3.37
Baseline-DC 66.96 68.74 67.84 9.08
Baseline-TD 65.44 64.26 64.85 6.09
Baseline-ST 67.41 66.05 66.72 7.96
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We generate another 4 feature sets, each of which is a combina-
tion of the baseline feature set and one of our NG, DC, TD, ST
feature sets. We train a SVM classifier with each of the combined
feature sets, and run a 10-fold cross validation on the dataset.
We compare the results with the classifier trained solely with
the baseline feature set. Table 9 lists the results.

The impact (D F) of the NG features is not significant since the
baseline and our NG features are both N-gram based; hence, they
provide redundant information to the classifier. The DC features
have the most impact on the performance, because it addresses
both the drawbacks of N-gram features, hence allowing the classi-
fier to learn a different perspective of the dataset. The TD features
capture the topics associated with a document. However, since a
topic is defined as a distribution of terms, which is similar to N-
gram features (where a term is given a weight), the impact of TD
features is not as dominant as that of the DC features. The ST fea-
tures capture both health-related keywords used and emotion in a
document. Since these properties are not captured in the baseline
feature set, combining the ST features with the baseline allows the
classifier to learn more information as expected.

Additionally, Table 10 lists the significance test results of each
non-NG base classifiers with respect to the NG base classifier, using
the McNemar v2 test outlined in Section 5.3.1. Here, the null
hypothesis states that the performance of each non-NG base classi-
fier is the same as the NG base classifier. According to Table 10, DC,
TD, and ST base classifiers are shown to be statistically significant
from the NG base classifier with the significance level a = 0.05, sug-
gesting that the proposed base classifiers learn significantly differ-
ent aspects of the data that, when combined together, result in a
better performance than using the NG feature alone. Note also that,
even though each non-NG base classifier performs worse than or
equivalent to the NG base classifier (according to Table 8), the
WPA ensemble method allows these base classifiers to contribute
their semantically heterogeneous knowledge to correct each other,
resulting in final decisions which are more accurate than those
produced by individual experts. This phenomenon also explains
why the performance (in term of F-measure) of the WPA method
is much better than that of the NG base classifier.

Note that the classification of the CB base classifier does not
seem to be statistically significantly different from the NG base
classifier, according to Table 10. This is consistent with the classi-
fication performance in Table 8 which reports that the classifica-
tion performance (in terms of F-measure) of both the NG and CB
base classifiers are roughly the same, while it may be intuitive that
Table 10
Number of features and significance test results using the McNemar’s method of each
feature type with respect to the NG features.

Feature
type

Num
features

McNemar
v2 score

p-Value
(McNemar’s
test)

Significant McNemar’s
test, a = 0.05)

NG 41,831 – – –
DC 23,549 6.5693 0.010375 Yes
TD 200 21.3384 0.000004 Yes
ST 14 51.4894 < 0.000001 Yes
CB 65,594 1.7349 0.187781 No
a classifier that learns all the aspects of the data should perform
much better than individual experts. An explanation for this
phenomenon might be the fact that the feature space of the NG fea-
tures (64% of the combined feature space) is much larger than
those of other feature types. This huge amount of NG features could
impede the significance of other feature types when altogether
learned by a base classifier. This opens a pathforward to investigate
feature selection techniques, which we consider for our future
work.

5.7. Large scale experiment

This subsection addresses three obvious questions:

1. Is smaller dataset like TwitterA large and diverse enough to
reflect the characteristics of social media, which is full of lexical
diversity and noise?

2. Are our proposed heterogeneous features able to gain insight
from such a small dataset to capture the characteristics of much
larger, real-world data?

3. Are our methods generalizable to other kinds of social media?

To address the above questions, we conduct another set of
experiments on real-world, large scale datasets such as TwitterB
and Facebook (Section 3). Each feature type is used to trained a base
classifier as outlined in Section 4.1, using 90% of the data of the
TwitterA dataset (another 10% held-out data is used to tune the
parameters when combining the base classifiers). Table 11 summa-
rized the base classifiers trained with the proposed feature types
and the baseline feature, including the number of features and
training time.

A random sample of 10,000 messages are drawn from each the
TwitterB and Facebook datasets, and manually labeled by 5 gradu-
ate students. The sample data of the TwitterB dataset contains
134 (1.34%) health-related messages. The sample data of the Face-
book dataset contains 107 (1.07%) health-related messages. It is not
surprising to see a lower percentage of health-related messages in
the Facebook dataset, since most Facebook messages are comments
to existing main posts. These comments, when treated individu-
ally, may not be able to express true semantics without presented
with the accompanied comments and the original posts. Hence a
Facebook message may have health-related semantics (especially
those comments to a health-related post), but may be classified
otherwise when interpreted individually. Fig. 6 provides an exam-
ple of a Facebook Timeline post and its accompanied comments. As
shown in the figure, if each message is treated individually, then
only the original post and comment #1 would be classified as
health-related; however, when treated as a whole conversation,
all the messages should be classified as health-related since they
discuss the same topic (about the original poster getting the swine
flu).

The baseline classifier, our base classifiers, and our proposed
ensemble classifiers are used to classify these samples. Table 12
lists the results in terms of precision, recall, F1, and F-measure
improvement over the baseline (D F1). The italicised numbers are
the highest number in the columns.

There are four points to note:
First, it is important to note that the performance in terms of F-

measure of the baseline classifier drops significantly (66.72% drop
in precision and 41.47% drop in F1), compared to that of the 10-fold
validation results in Table 8. This is because the baseline classifier
is trained with a binary-based N-grams features on a small dataset
of roughly 5000 messages. The binary features allow the classifier
to take into account only the presence of terms without
considering the importance of them. The obvious drawback of such
scheme is that terms with high discriminative power such as flu,



Table 11
Summary of the base classifier, number of features, and training time (formatted as
min:s) used for each proposed feature type and the baseline features.

Feature Base classifier # Features Training time

Baseline SVM 210,191 05:18
NG SVM 67,531 03:24
DC SVM 26,602 00:41
TD Random Forest 200 00:21
ST RIPPER 14 00:01
CB SVM 94,347 21:28

Fig. 6. A sample Facebook timeline post and its accompanied comments.

Table 12
Large scale classification results by our proposed methods against the baseline on a
sample of 10,000 messages from each of TwitterB and Facebook datasets.

TwitterB Facebook

Pr % Re % F1 % DF1 % Pr % Re % F1 % DF1 %

Baseline 9.96 65.36 17.29 0.00 8.43 61.58 14.83 0.00
NG 28.35 49.51 36.05 18.76 28.32 45.49 34.91 20.09
DC 58.32 24.83 34.83 17.54 66.60 31.24 42.53 27.70
TD 56.57 19.82 29.36 12.07 57.74 17.98 27.42 12.60
ST 27.45 44.61 33.99 16.70 41.60 39.18 40.35 25.53
CB 24.99 74.28 37.40 20.11 26.44 70.21 38.42 23.59
VOTE 22.50 59.46 32.65 15.36 33.05 65.42 43.91 29.09
WPA 62.57 64.44 63.49 46.20 60.36 63.46 61.87 47.04
MS 51.72 29.77 37.79 20.50 44.21 36.13 39.76 24.94
RevMS 30.55 19.87 24.08 6.79 36.94 34.74 35.80 20.98
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cold, headache, etc. would be treated the same as common terms
(e.g. tomorrow, the, when) and terms with low discriminative
power (i.e. terms that do not imply health-related meaning such
as Xbox, iPhone, water, etc). When testing such a classifier on a
much larger and diverse data, it is expected to see a rise in recall
and a drop in precision. Our NG features, though also based on
N-grams, remedy both the problems by cleaning the messages
(removing common stopwords and stemming terms) and utilizing
TF-IDF weights to represent each term. Cleaning messages allow
the classifier to ignore the common terms. Learning TF-IDF weights
enable the classifier to recognize terms with highly discriminative
power. Hence, the magnitude of performance reduction of the large
scale performance (47.3% drop in precision, 12.55% drop in recall,
and 32.14% drop in F1) of our NG classifier is relatively smaller
compared to that of the baseline.

Second, it is worth noting that the baseline classifier tend to
produce relatively high false positive rate, due to the very low pre-
cision (9.96%) and high recall rate (65.36%). To support this claim,
we run the baseline classifier and our best method (WPA) on the
whole TwitterB and Facebook datasets. The TwitterB data is pro-
cessed on a server with a 16-core Intel Xenon E5630 (2.5 GHz) pro-
cesser and 32 GB available RAM. The process was run using 40
threads (roughly 14 day’s of data per thread) and was finished
within 30 h. The Facebook data was processed on a server with
an 8-core Intel Xenon E5420 (2.50 GHz) processor and 16 GB of
available RAM. The process was run using 30 threads (roughly
48 day’s of data per thread) and was finished in 24 h. Fig. 5 plots
the normalized results (grouped by months) from April 2011 to
August 2012 in log scale. According to the large scale results in
Table 12, the baseline classifier tends to favor positive classes,
and hence detect health-related messages at a higher proportion
than our WPA method in both TwitterB and Facebook datasets.
According to the results from the large scale performance evalua-
tion shown in Table 12, our WPA methods yields comparable recall
rate with that of the baseline, but much higher precision, we con-
clude that the higher quantity of health-related messages detected
by the baseline are mostly false positives.

Third, even though the performance of all methods tend to
decrease when evaluated with large scale data, our WPA method
still yields reasonable good performance with small performance
degrade (17.88% drop in precision, 10.08% drop in recall, and
13.88% drop in F1). Our WPA method outperforms the baseline
by 46.20% in terms of F-measure on the TwitterB dataset and
47.04% on the Facebook dataset. We note also that, when combin-
ing base classifiers using the WPA method, a prominent increase in
the performance is observed in both TwitterB and Facebook data-
sets. This advocates our assumption earlier that a proper ensemble
of individual classifiers that learn different aspects of the data
could improve the efficacy of the classification.

Fourth, the large scale evaluation of all the methods on both the
datasets are similar. This suggests that the textual information of
both social media sources is similar in nature. Hence, a classifier
trained with a data source could be expected to perform reason-
ably equally to other social media domains as to the one it is
trained with. On another hand, this also suggests that our proposed
methods can easily generalize to other domains of social media.
6. Conclusions and future work

We investigate using 5 heterogeneous feature sets representing
different views of the data on machine learning ensemble methods
for health-related short text classification problem. We analyse the
parameter sensitivity of the feature extraction algorithms in order
to obtain the best possible features from each feature type. We
study the mutual effects of the feature sets by combining the base
classifiers, each of which is trained with a different feature type,
using standard ensemble methods. We are able to outperform
the baseline by 18.61% in the small scale evaluation and 46.62%
on average in the large scale evaluation, using the weighted prob-
ability averaging method. Our results are very promising and reaf-
firm our assumption that the limitation of the N-gram features on
the social media domain can be reduced by combining classifiers
that learn different characteristics of the data. Future works could
seek to improve the classification algorithm [62,63] and to employ
semi-supervised methods such as the co-training technique [64] to
expand the training data with unlabeled data.
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