
A Formal Language Approach for Multi-Sensor
Wearable Health-Monitoring Systems

Alexandros Pantelopoulos and Nikolaos Bourbakis (IEEE Fellow), ATRC Center, Wright State
University, AIlS Inc.

Abstract-Wearable Health-Monitoring Systems (WHMS)
promise to revolutionize health care by providing real-time
unobtrusive monitoring of patients' physiological parameters
through the deployment of several on-body and even intra-body
biosensors. Although several technological issues regarding
WHMS still need to be resolved, in order for them to become
more applicable in real-life scenarios, it is expected that
continuous ambulatory monitoring of vital signs will enable pro
active personal health management and better treatment of
patients suffering from chronic diseases, of the elderly population
and of emergency situations.

In this paper a novel formal language based model for multi
sensor data fusion and early-detection of various conditions is
presented. Patterns or even signal states indicating pathological
symptoms that are presented in the signals, which can be
collected from on-body distributed biosensors, are modeled as
symbols of the Prognosis context-free formal language, whose
grammar and production rules define the prognosis-words. The
proposed approach is based on a described generic WHMS
model and on a simple but at the same time efficient method for
characterizing body-signal's patterns and/or states. Finally, we
provide several illustrative examples for better comprehension of
the proposed model.

Index Terms-Biosensors, Wearable Health Monitoring
Systems, ECG, vital signs, Formal Language

I. INTRODUCTION

A MBULATORY monitoring of physiological parameters
through the use of wearable or even implantable

biosensors has been a research area of high interest during the
past years [1], [2], [25]. Mainly driven by increasing
healthcare costs and the need to provide medical care to the
increasing population of elderly [3], Wearable Health
Monitoring Systems (WHMS) have the potential to realize
consumer operated personal prevention and early risk
detection [1,21]. Moreover, by enabling long-term
unobtrusive monitoring ofa patient's physiological parameters
through his daily activities and thus providing real-time
feedback information about his health condition, WHMS can
lead to better treatment of chronic diseases, postoperative
rehabilitation patients [4] and high risk patients.

In order for health monitoring via wearable systems to
become more applicable to real-life scenarios and also
accepted by the potential users, WHMS need to satisfy certain
requirements [1]-[3]. These include low-power consumption,
small weight and size, security and privacy of medical data,
ease of use, unobtrusiveness and possible aesthetic issues of
system design, low cost and robust and reliable operation.
Current and future research advances in nanotechnology,
sensor miniaturization, low energy IC design, energy
scavenging techniques, wireless sensor networks and signal

processing promise to provide the means to efficiently address
these issues.

In addition to the previously described requirements, an
important and possibly required feature of WHMS is the
ability to provide embedded decision support. This is enabled
through implementing intelligent information processing of
the physiological data measured from the system's biosensors.
A great number of academia research efforts and industry
initiated projects have resulted in the development of WHMS
that support decision mechanisms for prognosis and detection
of various health or even mental states/conditions.

AMON [5], a project financed by the EU FP5 1ST program,
developed a wrist-worn device, which is capable of measuring
blood pressure, skin temperature, oxygen saturation in blood,
one lead ECG and activity level via embedded accelerometers.
The system aimed at high risk/respiratory patients and could
derive a classification of the estimated health condition of the
user as being normal, deviant, in risk or in high risk by using
specific limit values for every measured vital sign. MyHeart
[6], another project supported by the European Commission
and which also included industrial partners such as Nokia,
Vodafone and Philips, targeted the treatment of patients
suffering from cardiovascular diseases by enabling prevention
and early diagnosis. It adopted the use of sensing fabrics as
wearable biosensors, resulting in a smart-clothing system that
is comfortable for the user and capable of measuring and
classifying bio-signals such as ECG, activity and respiration
rate. WEALTHY (Wearable Health Care System) [7] and
MERMOTH (Medical Remote Monitoring of clothes) [8] are
additional examples of EU supported projects, which employ
smart fabrics and interactive textiles to enable wearable multi
parameter health monitoring of various categories of high-risk
patients.

Another example of multi-parameter WHMS is LiveNet [9],
developed in the Media Laboratory of MIT. It is a flexible
distributed mobile platform, which is capable of real-time data
processing and streaming and context classification. The
system targets several scenarios, such as automated Parkinson
symptom detection, epilepsy seizure detection and long-term
behavior modeling. AUDABE [10], designed from researchers
in the University of loannina in Greece, is a novel wearable
system that performs evaluation of an individual's emotional
state. A prototype including sensors for facial EMG, ECG and
respiration rate has been developed, which is capable of
recognizing and estimating basic emotional states such as high
stress, euphoria or disappointment. Other examples of portable
systems with decision support, include the works described in
[11] and [12] where researchers have managed to classify
ECG beats in mobile platforms such as PDAs and cell phones.



PHYSICAL CONDITION " TECHNOLOGIES "
1. Electrical activity ofthe heart + heart 1. ECG electrodes
rate & rhythm

2. Blood pressure monitor
2. Blood pressure (systolic and diastolic)

3. Temperature (body & skin)
3. Temperature sensor

4. Respiration rate
4. Respiration rate sensor

5. Oxygen saturation and blood volume
5. Pulse oximeter ~

6. Perspiration (e.g. sweating) ~
6. Galvanic skin response

7. Electrical activity of the brain
7. EEG electrodes

8. Electrical activity of the muscles 8. EMG electrodes

9. Heart sounds 9. Cardiac auscultation (stethoscope)

10. Glucose 10. Glucose sensor ,)

11. Body movements 11. Accelerometer

12. PC02 (Partial Pressure ofCarbon
Dioxide) i
13. Electrolytes (sodiu~ potassium)

14. Possible pains FEEDBACK

c::=::> FROM c::=::>
15. Body and mind condition/feeling PATIENT

16. Consciousness level

17. Respiration Problems

TABLE I
PHYSIOLOGICAL PARAMETERS AND

TABLE II
AVAILABLE WEARABLE BIOSENSOR

TABLE III
DETECTABLE PHYSIOLOGICAL

SYMPTOMS

1. High / low heart rate & cardiac
arrhythmias

2. Hypotension / hypertension

3. Fever / hypothermia

4. High / low respiration rate

5. Hypoxemia, hypovolemia

6. Excessive / no sweating

7. Abnormal el. activity of the brain

8. Abnormal el. activity ofthe
muscles

9. Abnormal heart sounds

10. Low / high blood glucose

11. Falls, accidents

12. Pain (back, chest or headache)
~:c 13. Weakness, malaise or fatigue

~ J 14. Nausea

~ e- 15. Numbnesse ~

~ rJ1 16. Cough
Z

17. Sputum

Fig.l. Tables describing the extraction of symptoms from body signals by available biosensor technologies and human-system interaction.

Finally, the LifeShirt from Vivometrics [13] and the
SmartShirt from Sensatex [14] constitute examples of
commercially available products, which are based on sensing
fabrics and conductive materials to incorporate bio-sensing
capabilities on some type ofcomfortable garment.

In this paper we present our effort to describe signal
patterns and/or states, which may be presented in the various
types of physiological parameters and vital signs measured by
wearable biosensors, as symbols of a formal language. The
grammar and the production rules of the Prognosis context
free formal language define the prognosis-words, which are
combinations of the language's symbols and indicate the
detection of a certain health condition. Our approach is based
on the availability of wearable biosensors discussed in Section
II and on a generic WHMS model described in Section III.
Furthermore, Section IV describes our approach for extracting
pathological symptoms from body-signals and defines the
structure, the grammar and the rules of the Prognosis
language. Section V provides some illustrative examples for
better understanding of the proposed approach and finally the
paper is concluded in the last section, which provides also a
brief discussion on future work.

II. PHYSIOLOGICAL PARAMETERS, COMMON SYMPTOMS AND

AVAILABLE BIOSENSORS

A wearable biosensor is a miniature sensing device, usually
a surface electrode or a skin patch, which is capable of
measuring a certain physiological parameter. A WHMS
employing a variety of biosensors is thus capable of collecting
real-time measurements of vital signs and other physiological
signals. By applying proper signal processing on the measured

data, important diagnostic features can be extracted from
every individual signal and by combining and fusing these
data together an estimate of the health condition of the
patient/user can be deduced [2], [3].

However, for a more accurate estimation of one's health
condition and the diagnosis of many, if not the most, diseases,
several other symptoms need to be taken into consideration
[15], [16]. These symptoms, like cough or malaise, are either
not measurable at all or they cannot be estimated without
using invasive methods, e.g. as in the case of determining
electrolyte levels in the body. Table I gives a comprehensive
overview of most of the physiological parameters and the most
common symptoms that need to taken into consideration and
properly evaluated to derive a specific diagnosis. This list is
not exhaustive and it does not include findings, which can
only be obtained from thorough clinical examinations and
tests like MRI, CT scan, chest radiology and other medical
and laboratory examinations typically performed in a hospital.

Table II provides a list of biosensor technologies, which
enable the measurement of several of the parameters listed in
Table 1. Examples of such biosensors, which are commercially
available, include ECG electrodes from Corscience (Erlangen,
Germany), 3M (St. Paul, MN) and Foster-Miller (Waltham,
MA). Moreover, several companies like Nellcor (Boulder,
CO), Nonin (Plymouth, MN) and Smiths Medical OEM
(Waukesha, WI) have developed small portable finger-tip
pulse oximeters for measuring oxygen saturation in blood and
pulse rate. Further examples include the portable blood
pressure monitor by A&D Medical (Tokyo, Japan), the pH
sensor by Vernier (Beaverton, OR) and the non-invasive
glucose monitor by InLight Solutions (Albuquerque, NM).
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Fig.2. A generic WHMS architecture [25]

Physiological parameters and vital signs from I to II listed
in Table I constitute signals and data, which are measurable
via the corresponding sensors and devices in Table II. The
Table I entries from 12 to 19 are additional symptoms and
physical signs, which are associated with a great variety of
diseases. These symptoms, once detected or quantified,
provide important information, which together with the
measured vital signs provide a more comprehensive
description of what is referred to as the clinical presentation,
which under proper interpretation may lead to a specific
diagnosis. However, in order to get feedback from the patient
about the possible existence of these symptoms either the
patient himself has to describe them or in case of some of
these physical signs, they can only be measured in an invasive
way using current sensor technologies.

Taking the previous discussion into consideration, Table III
lists several symptoms which are associated either with
measurable parameters from Table I, e.g. I-II, or with non
measurable symptoms related to the physical condition of the
patient and which can only be obtained through patient
feedback.

III. THE GENERIC WHMS MODEL

Fig.I depicts the architecture of a generic WHMS model.
Physiological biosensors constitute the front-end components
of the system and they can either be integrated as textile
sensors on smart clothes [6]-[8], [13], [14] or as hardware
modules on wireless sensor nodes in a Body Area Network
(BAN) [17], [18]. In the latter case the collected
measurements can be amplified, filtered and digitized on the

sensor nodes and then transmitted to the BAN's central node
through embedded ISM Band transceivers. In the former case,
physiological signals can be transmitted in analog form and
then be digitally processed at the system's central node.

The WHMS central node is responsible for several possible
tasks: I) collecting of various types of physiological data from
the biosensors, 2) applying further DSP on the signals (e.g. for
feature extraction), 3) comparing the extracted features from
the body signals with the "Healthy History Database", which
contains patient-specific normal vital-sign values and
analyzing the extracted features using intelligent algorithms to
provide embedded decision support, 4) generation of alarm
signals for the user, 5) displaying the estimated health status of
the user and/or the collected data on the node's screen, 6)
transmitting medical data to a remote base station (e.g.
hospital or cell phone of a supervising physician) or even to a
dispatched ambulance and finally 7) generating sensor's
control signals (e.g. for initializing measurements or setting up
parameters such as sampling interval and AID frequency).

The presented functional description of the WHMS model
encompasses the "concept" under which most of the
developed wearable system prototypes or commercially
available products for health-monitoring operate. However,
we envision a system that is also able to get feedback from the
patient in an additional manner, namely through voice (or
through writing on the central node's keypad). This
functionality, once implemented could enable the user to
provide feedback to the system concerning the presence of
symptoms that cannot be measured through standard non
invasive biosensors. These symptoms, as discussed in the
previous section, could include the presence of coughing,



nause~ malaise. back or chest pains etc. Implementing this
feature on a WHMS. which employs a wide variety of
wearable and/or implantable biosensors. could enable the
detection of a wide variety of health symptoms as the ones
listed in Table III and possibly of several others we have not
considered in the current study.

Finally, alarm signals and measured physiological data
along with the feedback from the patient can be transmitted
through the cellular network or the Internet to the medical
center and possibly also to a dispatched ambulance. As the
healthcare center keeps a database with long-term detailed
medical history of the patient the received data and patient
symptoms and the accompanying alarms can be further
evaluated to derive a more accurate estimation or even verifY
the detected health risk level.

IV. PROGNOSIS FORMAL LANGUAGE [24]

The Prognosis language is the theoretical model, which the
wearable monitoring, prognosis and prevention system model
relies on (Prognosis is the Greek word for predicting a future
condition from past knowledge/history and current pieces of
information). It is based on the efficient detection and
association of various signals produced by the human body
expressing its current health status. These body signals
themselves are composed by ··symptoms of health"". where
their presence under certain conditions may lead into a
prognosis of the health status of a patient.

The Prognosis formal language is applicable to multi-sensor
wearable health-monitoring systems. whose model was
described in the previous section. and which are capable of
measuring most of the physiological signals listed in Table I
and thus capable of detecting several of the symptoms listed in
Table III. In the following the process of extracting healthy
and pathological symptoms from measured body signals is
described. This approach is based on discriminating two
different categories of physiological signals: a) signals whose
"'diagnostic contenf' is simply provided in the value of each
acquired sample and b) signals. whose structural morphology
and timing are the actual features that convey important
diagnostic information.

A. Category ofvalue-specific physiological symptoms

The most typical physiological signals. which are included
in this category. are systolic and diastolic blood pressure,
respiration rate. body temperature. glucose level and heart
rate. The following definitions describe how ··symptoms·· of
interest. which contain diagnostic information. are determined
and Fig. 3 depicts this categorization graphically.

Definition 1: A body signal S... is defined as S~i = x(nT).
where xcR and x are values associated with healthy and
pathological symptoms. n denotes the nth sample and T is the
sampling interval.

Definition 2: A symptom of a body signal S ... at time nTis
defined as ""healthy·· and denoted Sh(n T) if and only if
A<x(nT)<B. where A is a lower bound and B an upper bound.
that define a healthy condition.

Definition 3: A symptom of a body signal S... at time nTis

defined as '''pathological or abnormal"' and denoted Sp(nT) if
and only if x(nT):SA or x(nT)~B.

B

A

Time

Fig.3. Representation of hypothetical sample values (white circles) of a body
signal in various levels of importance. The red layers represent high-risk
levels~ yellow layers represent moderate/low risk levels~ and the green layer
represents the ""healthy" range of values.

B. Category ofmorphology-specific physiological
symptoms

This category includes body signals. which describe the
electrical activity of various body parts, amongst which the
most common ones are the electrocardiogram (ECG), the
electroencephalogram (EEG) and the electromyogram (EMG).
Detecting healthy and pathological symptoms in such kind of
signals is a complicated process and it requires careful
conditioning of the signal (e.g. filtering, amplifYing etc) and
intell igent signal processing for feature extraction.

Our approach is based on a simple but efficient scheme
called LG-Graph. In brief. the concept of this methodology is
a) detecting significant maxima and minima in the signal and
b) describing the patterns. waves or potentials presented in the
signal as triangle-like shapes with individual geometrical and
morphological characteristics (e.g. segmenfs lengths and
slopes. area. peak value etc). This approach provides an
accurate and fast method for describing the patterns· features.
Based on this approach. signals like the ECG can be easi ly
analyzed and searched for patterns of interest.

Figure 4 illustrates how a part of an EeG waveform is
converted using the LG-Graph methodology to a sequence of
triangle-like-shapes (LGgt). Using this representation the
abnormality or the symptom can be defined and expressed as a
subsequence of these '''triangles·' (which do not need to be
adjacent). The waveform depicted in Fig.4 is taken from the
MIT-BIH Arrhythmia Database (record mitdb/233) available
online at Physionet [19]. [20]. Figures 5 and 6 provide further
examples of how peaks can be detected and characterized in
ECG waveforms. Fig.5 depicts a signal taken from the MIT
BIH ST Change Database (record stdb/327) and the signal in
Fig.6 is taken also from the MIT-BIH Arrhythmia Database
(record mitdb/209).
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Fig.4. Top: An ECG waveform with one normal beat and an abnormal one
indicating Premature Ventricular Contraction (purple dashed ellipse).
Characteristics of this irregular beat are the wide and premature QRS complex
and the fact that there is no preceding P wave. Bottom: Extraction of LGgt

triangles and depiction of some oftheir geometrical features.

As it can be seen form the provided figures, the LGgt

methodology is strongly dependent on the signal baseline (e.g.
the isoelectric line) [23]. For that reason, proper heart-rate
dependent digital filtering must be applied to ECG signal to
efficiently remove the baseline wander without introducing
extra noise to the waveform.

Using the described LGgt approach, the recognition and
detection of abnormal patterns (e.g. symptoms) is done by
sequentially searching the acquired signal for the
corresponding LGgt patterns that define and/or describe the
individual symptoms and which are stored in a LGgt database.
Furthermore, the fact that ambulatory ECG recordings contain
various types of noise is taken into consideration by our
approach, by using several metrics (with corresponding
acceptable deviation-margins) to do appropriate pattern
matching, e.g. the shape's height, width, area, steepness, as
well as the distance between subsequent triangles' centroids.

Fig.5. An ECG waveform exhibiting ST-segment elevation and hyper-acute,
symmetric and prominent T waves.
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Fig.6. An ECG waveform depicting the occurrence of several premature atrial
beats and the initiation of paroxysmal supraventricular tachycardia (from the
4th beat and on). Purple dashed ellipses indicate the absence of P-waves
between QRS complexes.

c. Theoretical Modeling ofthe Prognosis Language

Definition 5: A body signal is composed by the synthesis
(@) of healthy symptoms and pathological symptoms (if any):

Ss = [{Sh(niT)}@{ Sp(njT)}]i,jcZ

We define Prognosis as a context-free formal language
consisting of various types of letters (symbols). These special
symbols represent pathological symptoms from body signals.
Thus, the generic alphabet L of the Prognosis language is the
set of all the pathological or abnormal symptoms extracted
from the body signals.

L = {Spi, Spj, Spk, ... , Spr},

where: Spi€Ssl, Spj€Ss2, Spk€Ss3, ... , Spr€Ssn, are the pathological
symptoms of every body signal.

The Prognosis Grammar

We define a grammar G = (VN, Vn Sn PR), where:

• VN is the set of non-terminal symbols:



Fig.7. Symptoms (a)-(d) describe a hypothetical patient's profile at time 1.

(a) Onset of ventricular tachycardia.

(d)

Patient
Fee<l>ack:
- Chest Pain
• Nausea

Time
(c)

Time

(b)

80

The symptoms depicted in Fig.7 belong to the specific
alphabet Esp = {a~ b, c, d} and the detected pathologies
according to the Prognosis language form the corresponding
word: wl=a#b#c#d. According to the language's grammar, w]
is an indication of acute cardiogenic shock. (The waveform in
Fig.7(a) is taken from record cu02 of the CU Ventricular
Tachyarrhythmia Database at Physionet [20].)

In Fig.8 another hypothetical case is presented. We assume
that a patient is having the following symptoms: severe drop
in body temperature. hypotension, reduced respiration rate,
dizziness and weakness as well as a specific atrial dysrhythmia
(e.g. atrial fibrillation). The combination of these symptoms
according to the Prognosis grammar indicates the occurrence
of severe hypothermia. (The waveform in Fig.8(a) is taken
from record afdb/08219 of the MIT-BIH Atrial Fibrillation
Database at Physionet [20].)
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V. ILLUSTRATIVE EXAMPLES

In this section we provide two illustrative examples for
understanding of how the Prognosis language works to
combine detected pathological symptoms and thus to derive an
estimation of the individual's underlying pathological health
condition. It is important to note that the signals (except from
the ECG waveforms) presented in this section as well as the
corresponding co-occurrence of these pathological symptoms
are hypothetical.

can be written as:

L(G) = {Wi £ VT* I ST ~G* wd

The Prognosis Formal Model

The Prognosis words that can be produced have the form:

Wi = Spi(t)#Spj(t)# ...#Spk(t),

where the common time stamp I in all detected pathological
symptoms forming Wi indicates the fact that the production of
a Prognosis word is time-dependent (e.g. the symptoms
forming Wi have been detected in the same time window
[//,12]).

Finally the generative definition of the Prognosis Language

VN ={Ss, Sh, Sp' (TJi(2) (T.Vj(2) (Tk}k(2) LGgh
T...x{h,b,area,d,f/J,(J}, dCk' Wi, I, i, j, k, r, ST}. where:

oS,.. is a body signal.
o Sh is a healthy symptom.
o Sp is a pathological symptom.
o Ti is the set of terminal symbols that correspond to the

various categories ofSp in category A.
o 1j is the set of terminal symbols that correspond to the

various categories of Sp with LGgt represenation (category
B).

o Tk is the set of terminal symbols that correspond to the
various categories of Sp which are described by patient
feedback.

o LGgt is the representation of a Sp using a sequence of
triangle-like-shapes.

o T.u is the triangle-like-shape representation of a single
pattern or wave or peak in LGgt.

o h is the height of 1'.u.
obis the width (duration) of 1'.'1x.
o area is the area of Tu .

o d is the set of slope/derivative values of the Tsx segments.
o f/J is the set of f/J-slope angles of the T.'1X segments.
o (J is the set of 8-connection angles between T...x segments.
o dCk is the distance between the centroid of kth Tsx in the

LGgt and the temporal center of the corresponding LGgt.
o tPkr is the angle between the centroids of the kth and rth

Tu .

o Wi is a word belonging to language L.
o I is the time stamp of a symptom.
o ij,k,r c ,Zare indexes.

o ST is the start symbol of grammar G.

• VT is the set of terminal symbols:
VT = {E."P' Ai, Bi, Djk, ll, @ #}~ where:
o E.,p is a system- or application-specific alphabet.
o Ai and Bi are the lower and upper bounds (in

corresponding signal units. e.g. OF for temperature etc) for
determining pathological symptoms in body signal i.

o !l.;k is the set of values for the kth parameter (e.g. height~

angles~ width etc) of the LGgt -representation of the fh
signal in category B.

ollis the set of non-measurable symptoms (patient
feedback).

o The symbols # and @ represent operators of the language.

• PR is the set of production rules:
PR = (ST ~ Ti ; ST ~ 1); ST ~ST# T.i(or TJ}



(a) Onset of atrial fibrillation.

Fig.S. Symptoms (a)-(e) describe a hypothetical patient's profile at time t.
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0.4

VI. CONCLUSION

In this paper we have presented a novel approach to
characterize and represent pathological symptoms, detected in
various types of physiological signals, as symbols of a formal
language model called Prognosis. Specific combinations of the
Prognosis symbols may produce a word that is defined in the
language and thus give rise to the prognosis of a specific
medical health condition. In addition to that we have presented
our own approach to describe and represent pathological
patterns found in body signals, whose morphology conveys
important diagnostic information.

Furthermore, Prognosis is targeting applications in
Wearable Health-Monitoring systems. For this reason we have
also presented a generic WHMS model and also based our
definition of the language's grammar upon the current
availability of wearable biosensors.

Future work includes modeling of the WHMS - Prognosis
system using Stochastic Petri Nets and studying the use of
Neural Networks to derive a system that is capable of
adjusting to the individual user.


