

Toward a manifesto for the 'public understanding of big data'

Public Understanding of Science 2016, Vol. 25(I) 104–116 © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0963662515609005 pus.sagepub.com

Mike Michael

The University of Sydney, Australia

Deborah Lupton

University of Canberra, Australia

Abstract

In this article, we sketch a 'manifesto' for the 'public understanding of big data'. On the one hand, this entails such public understanding of science and public engagement with science and technology—tinged questions as follows: How, when and where are people exposed to, or do they engage with, big data? Who are regarded as big data's trustworthy sources, or credible commentators and critics? What are the mechanisms by which big data systems are opened to public scrutiny? On the other hand, big data generate many challenges for public understanding of science and public engagement with science and technology: How do we address publics that are simultaneously the informant, the informed and the information of big data? What counts as understanding of, or engagement with, big data, when big data themselves are multiplying, fluid and recursive? As part of our manifesto, we propose a range of empirical, conceptual and methodological exhortations. We also provide Appendix I that outlines three novel methods for addressing some of the issues raised in the article.

Keywords

big data, public engagement with science, public understanding of science

In this article, we begin to sketch out a 'manifesto' of what it means to engage with publics and their relations to the complex issues thrown up by 'big data'. The term big data is used to describe the massive and continually generated digital datasets that are produced via interactions with online technologies. These interactions may involve both human and nonhuman actors, particularly as the 'Internet of Things' and 'sensor society' develop. Human actors contribute to big datasets when they engage in activities such as making calls and using apps on mobile phones, using online search engines such as Google, purchasing goods or services online or taking part in customer loyalty programmes, uploading contributions to social media platforms, using wearable self-tracking devices or moving around in spaces that are equipped with digital sensing or recording devices. Nonhuman actors participate in the generation of digital data via technologies such as self-tracking devices,

Corresponding author:

Mike Michael, The University of Sydney, RC Mills (A6), Sydney, NSW 2006, Australia. Email: mike.michael@sydney.edu.au

'smart agriculture', in which plants and animals are fitted with sensors, the 'smart city', which includes technologies such as CCTV cameras and sensor-based traffic management systems and the 'smart home', involving domestic appliances producing and sharing data on the habits and movements of their occupants.

A digital data knowledge economy has developed in recent years, in which digital data have taken on commercial, research and managerial value for many actors and agencies. As the aggregation of individuals' personal (or 'small') data into massive datasets, big data are represented as offering unprecedented insights into social and economic trends and behaviours. Big data in their multiple manifestations have also become a 'big issue' for the social sciences. Big data are both a topic (what are the social impacts of big data?) and a resource (how does the use of big data challenge the existing sociological accounts of social processes, and how might the social sciences respond to, even learn from, this?). The complexity is neatly summed up in an introductory statement on the home page of the new interdisciplinary journal *Big Data and Society*:

The Journal's key purpose is to provide a *space* for connecting debates about the emerging field of Big Data *practices* and how they are reconfiguring academic, social, industry, business and government relations, expertise, methods, concepts and knowledge. (*Big Data & Society*, 2014, emphasis in the original)

Taking a lead from this statement, this article attempts to connect big data specifically to debates within the broad multidisciplinary fields of public understanding of science (PUS) and public engagement with science and technology (PEST). Prima facie, big data lend themselves to PUS and PEST framings of 'the' public. After all, it can be said to represent a technically specialist set of practices by which data about, for example, people's 'online' behaviour is gathered, processed and represented. In this respect, to focus on big data is to ask such PUS and PEST-tinged questions as follows: How, when and where are people exposed to, or do they begin to engage with, big data? Who are regarded as trustworthy sources of big data and credible commentators upon, and critics of, them? How do big data reflect, mediate and respond to folk knowledges about, for instance, the use and misuse of information? What are the mechanisms by which big data systems and their development are opened to public scrutiny, or which allow for the impact of publics' voices?

On the other hand, big data also raise a series of issues that can illuminate the presuppositions built into PUS and PEST framings. As we shall see, big data take on many forms, and their relation to publics is highly variegated, being at once a description of, a resource for, and a product that depends on, public practices. Such practices can range from 'active' (e.g. the use of social media) to 'passive' (e.g. where surveillance technologies gather data). In any case, big data map onto debates in PUS and PEST about how publics are partially constituted by the expert practices entailed in the empirical and analytic machinery of PUS and PEST (e.g. Irwin and Michael, 2003). In particular, the 'involutions' of big data in which publics are, in varying degrees, both the subjects and objects of knowledge, both authors and texts, simultaneously informants, information and informed, suggest that PUS and PEST might need to expand their empirical and analytic repertoires if they are to do justice to the phenomena of big data.

In what follows, we begin with a brief overview of some of the key debates in PUS and PEST. We then present an account of the various concerns associated with big data. We bring these together and ask how PUS and PEST might respond to these issues, conceptually, empirically and methodologically. In the process, we begin to sketch a manifesto for a 'public understanding of big data' (PUBD – see below). By way of proviso, this is self-evidently an exploratory piece, and the goals and strategies that comprise our manifesto are presented circumspectly. Nevertheless, our modest hope is that this article prompts discussion about the ways in which PUS/public engagement with science might respond to the complex challenges posed by big data.

I. PUS/PEST

In the earliest studies of science—society relations, quantitative techniques such as surveys were used to measure lay people's scientific literacy, or to gauge their deficiencies in scientific knowledge. With the rise in critical PUS, the so-called deficit model (namely, the de facto focus on the public's scientific ignorance) was abandoned and emphasis placed on the qualitative analysis of lay people's folk knowledges, which included case studies of their trust in particular scientific institutions. Here, qualitative methods such as ethnographic observation, semi-structured interviews and focus groups accessed the complex ways in which lay people's knowledge was bound up with issues of identity, relations of power and tacit skill. If quantitative PUS was shaped by an interest in facilitating scientific understanding in order to encourage public support of science, qualitative (or critical PUS) paid attention to the ways in which lay people's existing knowledges were oftentimes denigrated by scientific experts with the result that the credibility of scientific institutions become progressively eroded (for a classic overview, see Wynne, 1995).

Subsequently, there have been a number of developments in the field. For example, the divide between expert and public constituencies – science and society – has been reconfigured. Thus, for instance, the Mode II model of science (Nowotny et al., 2001) suggests that science and society increasingly interdigitate as lay people come to be situated as lay experts or scientific citizens. These new configurations have been variously theorized as, for instance, assemblages or hybrid forums (see Callon et al., 2001; Irwin and Michael, 2003). The interdigitation of science and society became also a proactive project within the field. This, of course, reflected the 'participatory turn' in which 'PUS' transitioned into 'PEST'. Crucially, PEST was concerned with developing and testing deliberative techniques by which the voice of the public could enter into decision-making processes around science and technology (Hagendijk and Irwin, 2006).

A range of deliberative or participatory methods have emerged (e.g. citizens' juries, consensus conferences, deliberative polling, card-based group discussion), and PEST has been centrally focused on how to ensure their 'appropriate functioning' (e.g. Chilvers, 2008). Furthermore, PEST scholarship has interrogated the problematic assumptions built into these engagement procedures and the broader governmental functions that attach to them (Michael, 2009; Welsh and Wynne, 2013). This critical account articulates with recent pragmatist perspectives on publics, democracy and the emergence of political issues. As Marres (2012) has argued, PEST has been primarily focused – technically and critically – on the 'procedural' elements of the relations between publics and science. By contrast, she advocates a view that focuses on how issues – especially those that escape institutional framing – co-emerge along with their publics. Thus, Marres suggests that publics can articulate issues that have failed to register institutionally. Accordingly, it is in the process of that issue articulation that the public comes into being. Of course, this is not to say that these 'issues in the wild' do not inter-relate with more procedural approaches: after all, the latter feed 'imaginaries of publics' (Welsh and Wynne, 2013) back to emergent publics, and emerging issues can be taken up as PEST initiatives that are institutionally and practically expanded (e.g. Hinchliffe et al., 2014).

It is within this evolving landscape of PUS and PEST that we wish to situate our manifesto for a PUBD. At this point, a word of explanation is in order for our use of the term Public *Understanding of* Big Data (especially in light of the preceding condensed history of the field). Our main rationale for this is the intuition that in the case of big data, understanding and engagement become difficult to differentiate. To 'misunderstand' big data is no longer a matter of compromised literacy but, within the dynamics of big data, another opportunity for 'engagement'. For instance, for a public to misunderstand big data is, potentially at least, to contribute to yet more big data about such 'misunderstanding' which might subsequently be used to market something to – engage with – that misunderstanding public. PUBD thus simply serves as a heuristic term which ideally would serve

to prime questions about the character of understanding, and also the complexity of engagement (whether that be epistemic, political, cultural or economic).

2. Critical data studies

If the preceding section placed PUBD in relation to the concerns of PUS/PEST, this section sets out to present a number of critical accounts of big data. This is by no means exhaustive, but simply indicative of the range of big data and the array of issues that have followed in their wake. This will serve as the basis of more detailed discussion of a manifesto for PUBD.

A body of literature has begun to develop that may be loosely described as critical data studies (Kitchin and Lauriault, in press) in response to big data. Critical scholars have investigated the ways in which big data are configured via human decision-making and the role played by the Internet corporations and other digital developers in shaping how big data are gathered and analysed. Big data are therefore positioned in this literature as a sociotechnical assemblage involving complex interactions of humans and nonhumans (boyd and Crawford, 2012; Lyon and Bauman, 2013; Kitchin, 2014; Kitchin and Lauriault, in press).

The supposed objectivity and neutrality of big data have been challenged by writers in this literature. Critical scholars have called into question the notion of 'raw data' that underpins dominant representations of big data, pointing to the ways in which data are inevitably always partial, selective and 'cooked' by social actors. The conventions and practices of seeking out, recording, archiving and categorizing data have been examined as part of this critique (Baym, 2013; Boellstorff, 2013; Gitelman, 2013; Räsänen and Nyce, 2013). Additionally, Boellstorff's (2013) concept of 'rotted data' draws attention to the impurity of these data, their materiality and the loss of control their generators have once the data enter circulation in the digital data economy. It has been further argued that big data are co-authored by the heterogeneous actors involved in their generation, including members of the public as well as a heterogeneous panoply of other actors such as code and software, platforms, sensors, programming and data analysis experts and the algorithms that are employed in selecting and making sense of big data (Beer, 2013; Beer and Burrows, 2013; Rogers, 2013; Totaro and Ninno, 2014).

A digital data assemblage is generated each time a user interacts with a digital technology that is incorporated into the Internet and thus feeds data into a larger archive to be aggregated with others. Here, the user is both producer and consumer of content, as denoted by the term 'prosumer' that is used in media and Internet studies to describe the interactions of users with online technologies (Ritzer, 2014). Importantly, these data assemblages are responsive, dynamic and lively, constantly reconfigured as new data are generated and datasets are combined in different ways (Andrejevic, 2013; Beer, 2013; Beer and Burrows, 2013; Kitchin, 2014; Lash, 2006; Lyon and Bauman, 2013). In some cases, this process of data reconfiguration can take on more dramatic forms as in the case of data hacking and ongoing revisioning of open source data or programmes. This suggests that to the processes of consumption/production, we can add 'produsage', and accompanying the figure of the prosumer (and its relation to data as 'products') is the 'produser' (and its relation to data as 'process' – see Bruns, 2008).

When interacting with online technologies, people are encouraged to view themselves as data-generating subjects or as groups of data subjects (Ruppert, 2011) and to interact with and interpret their data assemblages.

Data assemblages often participate in a cybernetic process. They both draw on individuals' personal data and contribute to large digital datasets and, in turn, may be used to feedback to individuals (either as their own personal data or as the insights offered by aggregated data) (Beer and Burrows, 2013; Lupton, in press). For example, the Glow menstruation, ovulation and fertility

monitoring app and platform for women encourages users to enter manifold aspects of their daily bodily functions and activities, including signs of ovulation, menstruation, mood, body weight, diet and exercise and whether conception has occurred. Most of these data must be manually entered by users, but some can be automatically generated by other devices that sync to the app, including wearable diet and activity trackers such as MyFitnessPal. As the apps' algorithms learn about the bodies of its users, they are able to make customized predictions about ovulation, menstruation and fertility. The users can view graphs and other data imagery that represent their own data to themselves, helping them identify patterns and relationships between their data and to forecast ovulation to avoid or facilitate a pregnancy. However, their personal data are also automatically uploaded to the developers' digital archive and are used by the developers to generate insights into their users' fertility and conception patterns across a population of tens of thousands of users (it is claimed on the Glow website that the app has helped over 20,000 women conceive in the first year in which it has been available). These aggregated data are then fed back into the app's function and the information it provides to users, interacting with the user's personal data as part of the algorithmic predictions that it makes for each user.

The use of big datasets in surveillance activities ('dataveillance') is also relevant here (Best, 2010). Over the past 2 years or so, there has been considerable news media reporting of the Snowden-leaked documents about the ways in which people's personal digital data and metadata have been surveilled by national security agencies in the United States, United Kingdom and Australia. Taken together with accounts of various hacker attacks on databases containing people's often very private and personal information (such as medical data or the information they have uploaded to adult dating sites), this has demonstrated to the public just how insecure these data are. Other controversial exposés of the ways in which people's personal data are manipulated by social media companies (e.g. the Facebook emotion manipulation project), or harvested and sold for commercial benefit to third parties by data brokers, have publicized the potential drawbacks of becoming a data subject. However, there are still manifold ways in which personal information is collected and repurposed as part of big datasets of which publics may be unaware. Given the rapidly multiplying sites and spaces in which people are digitally surveilled (literally from the insideout in the case of objects such as ingestible tablets equipped with microchips and the continuous digital glucose monitors used by some diabetics) and the ways in which the datasets they generate can be joined up, the extent to which members of the public are able to maintain awareness of how their bodies and selves are being digitally recorded and rendered into big data is questionable. Furthermore, as the monitoring of individuals' bodies, energy use, work productivity, moods, social relationships, purchasing habits, driving practices and so on becomes more routinized and widespread, the extent to which the subjects of this tracking can opt out becomes limited. People may have few choices about whether or not to participate as data-generating subjects.

As digital device users continue to surveill each other (e.g. on social media sites), as both public and private spaces become embedded with digital sensors that monitor increasingly detailed aspects of behaviours and movements of users of these spaces and as citizens are increasingly expected to use digital devices to monitor their own behaviours, it has become impossible to avoid becoming a subject of dataveillance (Lyon and Bauman, 2013; Lupton, in press). Given the dispersed, constantly moving and continual nature of dataveillance, or what Lyon and Bauman refer to as 'liquid surveillance', we are all 'citizen sensors' (Gabrys, 2014) by default, whether we agree to this role or not.

3. Big data and the public

Above, we hinted that as we move toward a manifesto for PUBD, terms that are commonly employed in PUS and PEST become complicated. We noted the critical approaches in PUS/PEST

have drawn attention to the ways in which 'the public' as a phenomenon and object of research is configured by the actors involved in researching PUS/PEST. In relation to big data, the public becomes even more problematic a concept, given the multiple shape-shifting in which different data subjects and objects participate. As a consequence, the 'public' of big data is a constantly moving virtual artefact that has varying meanings and constituents depending on which actors are seeking to define this entity and at which point in time they are seeking to do so.

'Understanding' or 'knowledge', as initially expressed in the PUS literature, whether expert or lay, has tended to be represented as a static possession. With critical PUS and PEST, this has changed somewhat, and these concepts have been tied to a multiplicity of concerns, including trust, identity, dialogue and so on. However, the responsive, dynamic, lively nature of the knowledges produced from online technologies changes the stakes somewhat. What exactly counts as knowledge or understanding where the data themselves are continually in flux for both lay people and experts? Moreover, knowledges are invested with different forms of value in the digital knowledge economy. Unlike most forms of lay knowledges that PUS and PEST researchers have investigated (as opposed to, for example, work on the labour and property rights of publics such as tissue donors – e.g. Cooper and Waldby, 2014), as we noted above the knowledges that are generated and consumed by the public as part of digital datasets have direct commercial and other forms of value. Once the data enter the digital knowledge economy, those who generate the data can lose control of them as they are repurposed by others (Beer, 2013). This raises issues around the relations of knowledge to 'ownership' (which might often take opaque forms) and further nuances the figure of prosumer as it engages with big data as 'property'.

The notion of 'expertise' can be similarly interrogated in relation to the digital knowledge economy. Take the example of the practice of citizen-led science initiatives that are being reworked via digital data practices. New forms of 'citizen science' or 'citizen sensing' are part of crowd-sourcing efforts that equip people with digital devices to collect scientific data and upload these to be aggregated with others' data. The concept of the smart city or 'sentient city' (Thrift, 2014) incorporates the intersection of various sensor-equipped nodes, including human and nonhuman actors, combining data from various standpoints to assist with efforts towards environmental sustainability. These initiatives have, in turn, altered notions of what is considered ideal 'citizenship' around data practices. To be engaged as an active and responsible citizen may come to include the willingness to use sensors and other digital devices to monitor one's own environmental footprint and the environmental conditions in one's neighbourhood and share these data with others (Gabrys, 2014). Just as we may speak of 'sentient cities', we may also refer to the 'sentient citizen' – a digital data-emitting node in the Internet of Things. This has implications for the concept of expertise. Expertise becomes distributed among the humans and nonhumans actors that comprise sentient landscapes in which data are co-generated.

It is important to recognize that the liquidities and flows of big data are not necessarily unimpeded: blockages and resistances are part of the digital data economy. The scenario of the active citizen sensor, for example, offers little room for those members of lay publics who are unequipped to participate or who may actively resist such a positioning. Nor does it acknowledge that open data initiatives are the sites of significant struggle where activist groups contest commercial efforts to co-opt and exploit them (Bates, 2012). The opportunity for lay people and grassroots organizations to make use of the data is limited unless they have technical data science expertise. However, it is not only lack of technical expertise that prevents lay people from using big data for their own purposes. Despite much discussion about 'open access' to 'open data' (Davies and Bawa, 2012), such access has lessened as the commercial value of big data has increased. Internet empires (Google, Facebook, Amazon, Twitter and Apple), along with lesser digital corporations and government agencies, have control over digital data archives; access to these has become an issue of corporate power and governmental largesse (Fuchs, 2014).

It is therefore difficult for lay people to challenge big data analytics, especially where these are processed algorithmically (Lyon, 2002). As Andrejevic (2014) puts it, there is a 'big data divide', resulting in some actors having ready access to big data and others excluded. Over and above this, as we observed above, lay people can emit digital data or be configured as data subjects without knowing it, let alone consenting to it. Even where people self-consciously digitally monitor themselves, what is done with their data (e.g. how it is combined with other datasets) might well lack transparency.

Having noted this, we can also point to members' of the public broader concerns about big data. There is still little research that has investigated what the public makes of big data, aside from reports from privacy organizations and government bodies. What these reveal is deep ambivalence and occasional suspicion (Madden, 2014). Lay people recognize the value of big data for public goods such as maintaining national security, controlling crime, promoting public health and improving healthcare. However, many people realize that their data doubles have become commercially valuable and are hostile to the idea that government agencies should sell big data for profit rather than use it for the public good. (The Wellcome Trust, 2013). The public outcry created by the British government's attempt to capitalize on data from the National Health Service (care.data) is one example (Anonymous, 2014).

In light of the above discussion, we can see that publics can take on numerous epistemic guises in relation to big data. Tentatively, we can propose that they are variously 'lay users' (who are users or consumers of big data), 'lay contributors' (who generate and contribute data), 'lay experts' (who are 'digitally literate' and engage with the processes, properties and politics of big data) and 'expert laypersons' (who actually write code and design technologies). Needless to say, these categories are neither stable nor mutually exclusive, but hopefully they provide a sense of the complexity of what it means to be a 'public' embroiled in the dynamics of big data. Indeed, part of the challenge for researchers who are interested in public engagements and entanglements with big data is identifying the ontologies of these categories and their intersections. For example, a 'lay user' of big data is almost inevitably also simultaneously a 'lay contributor': when users browse the Internet to search for big data information, their browsing history is recorded and noted by the search engine they use, feeding into a new big data set. 'Big data's understanding of publics' and 'PUBD', in other words, are mutual and co-developing configurations.

4. Toward a manifesto for public understanding of big data

In light of all this, enquiries into how publics engage with, configure, respond to and use big data require new ways of thinking, not least those evidenced in fields such as digital sociology, critical analyses of data, digital cultures, software studies and Internet studies. Furthermore, given the ways in which digitized knowledges on people's private habits and preferences are generated and shared as part of big datasets, researching PUBD will need to address contemporary concepts of property, privacy and information security that have previously not much featured in PUS and PEST. Research into PUBD, therefore, involves an engagement with new modes of knowledge production and circulation, new academic literatures and new ways of thinking about data and data practices. That noted, in what follows, we set out the beginnings of a manifesto that addresses what this 'programme of research' might look like. We heuristically organize this in three parts – the Empirical, the Conceptual and the Methodological.

The empirical

The basic empirical challenge a PUBD faces is how to grasp the sheer variety of data that are being derived and the multiplicity of means by which these big data are constituted. Leaving aside grand

Michael and Lupton III

theorizing (Holton, 1992; Lyotard, 1984), the study of the relation between publics and science and technology has tended either to focus on the extent to which publics possess a generic scientific literacy, however that is framed (e.g. Durant, 1993), or engaged with specific controversies. PUBD, however, must address both the many sorts of data that are being 'produced' and their complex and evolving combination. Within science, this combination might be said to be grounded in common epistemological principles, as well as complexly mediated through social and institutional configurations (as the literature on interdisciplinarity makes clear – for example, Barry et al., 2008). However, big data combination seems to be altogether more opportunistic, piecemeal, mobile and multiple. If there are 'principles' at play here, what are they? Can they be said to be 'algorithmic' and if so what does this mean? Who produces such principles, who implements and circulates them?

The point is that, even at the simplest level, pursuing PUBD requires that we address the issue of what it means to ask members of the public even to think about big data in terms of their *empirical siting and status*. What counts as big data? How do they emerge? Where are they being produced? By whom (e.g. commercial organizations, state institutions) and by what (e.g. everyday technologies such as ATMs and surveillance cameras, the emerging Internet of things)?

However, insofar as people are also 'prosumers', another terrain of engagement with big data is opened up, namely, the study of the practical processes by which a lay person 'emits' digital data, 'receives' data (or its fruits), uses data (in the process emitting more data), and, perhaps on occasion, resists the self-emission and use of data. Here, there are key issues around the 'levels of awareness' that attach to the processes of data emission and use. Many of these data-deriving processes are clearly integral to the sociotechnical systems with which we are routinely embroiled (surveillance, web-browsing, credit card use, medical visits, etc.), and yet they are also sometimes the subject of critical commentary (see above). As such, how we are analytically to address 'awareness' and its relations to understanding and engagement becomes critical. For instance, we might imagine a sort of 'oscillatory awareness' of big data as aspects of its prosumption come into and out of focus, individually and collectively. Thus, issues about privacy, ownership and data exploitation can shift between, or co-exist as – matters of overt concern and matters of routinized utility. How might we empirically access this oscillatory awareness? To the extent that this notion holds water, what does it imply for the existing and contested empirical perspectives on the 'public'?

Perhaps more fundamentally, any empirical approach to PUBD must acknowledge that it too is likely to contribute to the making of big data. On this score, PUBD comprises an extreme form of the performativity of social science method (see Law, 2004). To be sure, all such methods heterogeneously construct their 'objects of study'. Indeed, the 'results' derived through such methods – including those of PUS and PEST – can, via various means such as 'governmentality' initiatives (e.g. Dean, 1999), eventually impact upon publics of various sorts. In the case of PUBD, the very online announcement of a study or the presentation of results can, almost instantaneously, become part of the object of study, say, through a platform such as Twitter. It is almost as if PUBD becomes its own object of analysis, and, if that is not vertiginous enough, so too does the present discussion of this! Here, it would seem then that PUBD pointedly encapsulates the processuality of social science research: like 'its' publics it is informant, information and informed in rapid cycles that approach simultaneity.

We can summarize the preceding account as a series of manifesto points:

- Publics are shifting combinations of users and producers.
- Empirical data of PUBD are multiple and shifting, iterative and involuted and can include PUBD itself.
- Expertise is shifting and distributed, spanning the lay and the professional, the human and the nonhuman).

- Big data imply knowledge that is complexly associated with issues of ownership, control and privacy.
- Understanding of, and engagement with, big data needs to be situated in relation to notions of 'awareness' and the various levels at which this operates.

The conceptual

We have ended up at a point where big data, understanding, and publics all seem to be rather complex. This is indicated in the terms we have drawn upon, terms that include opportunistic, piecemeal, oscillatory, prosumer, mobile, liquid, lively, cooked, rotted, combinatorial, responsive, complex, evolving, vertiginous and processuality. To reiterate, data combined into big data can derive from domains that seem to be rather distant. We can readily envision combining datasets on credit worthiness and visits to medical practitioners to 'deduce' a 'measure' of stress. More exotically, we might imagine the *experimental* combination of datasets, say on household energy consumption patterns and mobile phone use. This is an 'involutionary' combination (e.g. Ansell Pearson, 1999) that brings together otherwise disparate data in ways that *potentially* might have value.

The broader point is that under such dynamic and involutionary conditions, concepts such as understanding or engagement are difficult to apply, let alone to operationalize, when they are themselves recursively affected by their object (that is, big data). It seems to us that of equal importance are notions such as 'affect' and 'imagination'. Caught up in its vertiginous and involutionary processuality, we can envisage the challenges lay people face in grasping – cognitively and socially – big data. In some ways, we are affective and affected nodes in the trajectories of data, shaping and shaped by their mobility and combination. To get at this is as much a matter of imagination – how do people 'imagine' the operations of big data? Conceptually, what notions can we draw upon to theorize how publics' affects are mediated through, and reflected by, big data?

As a corollary to the above, big data are also profoundly involved in 'endowing' persons and their sociotechnical relations with particular qualities and identities. Big data, in their specificity around, for instance, security, credit, insurance and health promotion, enact publics in terms of their rights to privacy, their capacities to control their finances, their responsibilities to their own and others' health and so on. It is not exactly difficult to derive an array of case studies or profiles – caricatures even – that congeal to structure, or at least shape, our grasp of some of the operations of big data: the financially irresponsible couple, the environmentally wasteful family and the medically careless individual. Empirically, we might ask members of the public to imagine the sorts of cases/caricatures that have emerged through the operations of big data.

However, taking the foregoing discussion in the round, it would seem that we are faced with patternings of amorphousness and specificity. To borrow from Deleuze and Guattari (1988), we might phrase these patternings in terms of the interplay between deterritorialization (disordering) and reterritorialization (re-ordering). As they put it, 'How could movements of deterritorialization and processes of reterritorialization not be relative, always connected, caught up in one another? ... The important point is that ... (these) ... are not two opposed models ...' (Deleuze and Guattari, 1988: 20). In the case of big data, we might posit the following patterning: new identities become possible (territorialized) because of the deterritorialization that combines datasets in novel ways, only for those identities to be disputed (deterritorialized) by various groups leading to subsequent efforts to re-territorialize (bring more datasets into novel alignment). It follows that we need to develop concepts that access both the ways in which people are diffusely and specifically affected by big data, and how they are at once rendered 'emergent' (that is, deterritorialized) and 'determinate' (that is, reterritorialized).

On the basis of this and previous discussions, we can draw out the following manifesto points:

A PUBD needs to develop concepts capable of addressing the impact of big data, not least
insofar as big data entail the combination of more or less disparate datasets yielding more or
less stable and novel public identities.

- A PUBD needs to expand its conceptual armoury to address how these big data-derived
 public identities intersect with the existing public identities (e.g. through health insurance
 requirements, through social media).
- Given the complexity of public practices in relation to big data, PUBD will need to revisit
 some of the key ideas of PUS/PEST: how do notions such as public, identity, trust, engagement, folk knowledge and participation hold up in the context of big data?

The methodological

In light of the various issues discussed above, how a PUBD methodologically addresses big data's implications for, and impacts on, publics becomes of central importance. As we have seen, the embroilments of 'lay people' (and, as we know, this term will require considerable nuancing) with big data (which can include the digital data of a PUBD research event itself) are hugely complex. We are faced with an empirical field marked by an enormous diversity of datasets that enter into big data, multiple roles that publics can adopt or assimilate in relation to big data, the heterogeneity and distributedness of expertise, the muddling of engagement and understanding with diverse or oscillating levels of awareness and the often opaque associations between the epistemic (knowledge) and the commercial (property, ownership, control). In this context, research events in PUBD are likely to be 'performative' (a research method will shape the sort of social data that are produced) and 'recursive' (a PUBD study can become part of big data via participants' use of big data, and thus part of its own object of study).

Putting this more broadly, we can imagine research in terms of a research 'event' in which multiple, heterogeneous elements (minimally participants, research tools, researchers) are brought together to generate 'data'. On a performative or processual view (Law, 2004), these elements can mutually change – co-become with one another so that the 'research event' emerges as something rather different to the research event as initially envisaged by the researchers. Under such circumstances (and these apply especially acutely to PUBD), research cannot be a simple matter of *representing* people's 'understanding of' or 'engagement with' big data as this is likely to be mobile, multiple, iterative, and emergent. Rather, the empirical task also becomes one of creatively enabling lay people's imaginative and affective relations to big data to *unfold* (Michael, 2012).

To translate the foregoing into manifesto form, we present the following suggestions:

- PUBD needs to adopt or adapt methodologies that can encompass the shifting variabilities
 of publics, expertise, big data and the relations among these.
- In particular, such methodologies will need to enable not only the emergence of understandings of, and engagements with, big data but also facilitate variable forms of awareness of, and imaginative and affective relations to, big data.
- Such methodologies will have to incorporate the peculiar processuality and recursiveness of PUBD research events and address the issue of their own particular forms of performativity in the generation of social data.

While we have suggested some broad programmatic manifesto points for a PUBD methodology, we would also like to provide examples of one particular form that such a methodology might take. To this end, we provide a short Appendix 1 describing some techniques that we developed in an

initial pilot study for a wider PUBD programme of research (see Appendix 1 available at: http://pus.sagepub.com/content/by/supplemental-data).

5. Concluding remarks

In this article, we have attempted to sketch an approach to the PUBD – one that takes into account the complexities of big data. Obviously, this is an exploratory effort and we are keenly aware that we have barely scratched the surface. Here, we present a brief re-consideration of the implications of our discussions of PUBD for PUS/PEST more generally. First, PUBD reminds us that PUS/ PEST are parts of wider sociomaterial processes: we cannot do PUS/PEST research without acknowledging that PUS/PEST feeds into a digital knowledge economy, and, as a contributor to big data, impacts on its own object of study. Second, the fluid, lively, combinatorial and unfolding character of big data suggests that PUS/PEST might benefit from further developing its approaches to people's engagement with the future prospects of science and technology. Insofar as technoscientific prospects are digitally mediated, they are recursively and complexly part of the knowledge economy. Under these circumstances, lay expectations are likely to be marked by mobility, vagueness and by what we have called 'oscillations of awareness'. Third, and relatedly, this suggests that the imaginative and affective dimensions of PUS/PEST need greater specification. Lay people's relations to science and technology are, of course, cognitive, social, political and cultural. But as our account of PUBD suggests, they are also affective and imaginative in a knowledge economy marked by de- and reterritorialization, recursion and complexity.

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

References

Andrejevic M (2013) Infoglut: How Too Much Information Is Changing the Way We Think and Know. New York, NY: Routledge.

Andrejevic M (2014) The big data divide. *International Journal of Communication* 8. Available at: http://ijoc.org/index.php/ijoc/article/view/2161

Anonymous (2014) Power to the people (editorial). *Nature* 505(261). Available at: http://www.nature.com/news/power-to-the-people-1.14505/ (accessed 4 October 2015).

Ansell Pearson K (1999) Germinal Life. London: Routledge.

Barry A, Born G and Weszkalnys G (2008) Logics of interdisciplinarity. Economy and Society 37: 20-49.

Bates J (2012) 'This is what modern deregulation looks like': Co-option and contestation in the shaping of the UK's Open Government Data initiative. *The Journal of Community Informatics* 8(2). Available at: http://ci-journal.net/index.php/ciej/article/view/845/916

Baym N (2013) Data not seen: The uses and shortcomings of social media metrics. *First Monday* 18(10). Available at: http://firstmonday.org/ojs/index.php/fm/article/view/4873/3752

Beer D (2013) *Popular Culture and New Media: The Politics of Circulation*. Houndmills: Palgrave Macmillan. Beer D and Burrows R (2013) Popular culture, digital archives and the new social life of data. *Theory, Culture & Society* 30(4): 47–71.

Best K (2010) Living in the control society: Surveillance, users and digital screen technologies. *International Journal of Cultural Studies* 13(1): 5–24.

Big Data & Society (2014) About the journal. Big Data & Society. Available at: http://bigdatasoc.blogspot.com.au/p/big-data-and-society.html

Boehner K, Gaver W and Boucher A (2012) Probes. In: Lury C and Wakeford N (eds) *Inventive Methods: The Happening of the Social.* London: Routledge, pp. 185–201.

Boellstorff T (2013) Making big data, in theory. First Monday 18(10). Available at: http://firstmonday.org/ojs/index.php/fm/article/view/4869/3750

boyd d and Crawford K (2012) Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. *Information, Communication & Society* 15(5): 662–679.

- Bruns A (2008) Blogs, Wikipedia, Second Life and Beyond: From Production to Produsage. New York, NY: Peter Lang.
- Callon M, Lascoumbes P and Barthe Y (2001) Acting in an Uncertain World: An Essay on Technical Democracy. Cambridge, MA: The MIT Press.
- Chilvers J (2008) Deliberating competence: Theoretical and practitioner perspectives on effective participatory appraisal practice. *Science, Technology & Human Values* 33(2): 155–185.
- Cooper M and Waldby C (2014) Clinical Labor: Tissue Donors and Research Subjects in the Global Bioeconomy. Durham, NC: Duke University Press.
- Davies T and Bawa ZA (2012) The promises and perils of open government data (OGD). *The Journal of Community Informatics* 8(2). Available at: http://ci-journal.net/index.php/ciej/article/view/929/955
- Dean M (1999) Governmentality: Power and Rule in Modern Society. London: SAGE.
- Deleuze G and Guattari F (1988) A Thousand Plateaus. London: Athlone Press.
- Durant JR (1993) What is scientific literacy? In: Durant JR and Gregory J (eds) *Science and Culture in Europe*. London: Science Museum, pp. 129–137.
- Fuchs C (2014) Social Media: A Critical Introduction. London: SAGE.
- Gabrys J (2014) Programming environments: Environmentality and citizen sensing in the smart city. *Environment and Planning D: Society and Space* 32(1): 30–48.
- Gaver W, Michael M, Kerridge T, Wilkie A, Boucher A, Ovalle L, et al. (2015) Energy babble: Mixing environmentally-oriented internet content to engage community groups. In: *CHI '15 Proceedings of the 33rd annual conference on human factors in computing systems*, Seoul, Republic of Korea, 18–23 April 2015, pp. 1115–1124.
- Gitelman L (ed.) (2013) 'Raw Data' Is an Oxymoron. Cambridge, MA: The MIT Press.
- Hagendijk R and Irwin A (2006) Public deliberation and governance: Engaging with Science and technology in contemporary Europe. *Minerva* 44(2): 167–184.
- Hinchliffe S, Levidow L and Oreszczyn S (2014) Engaging cooperative research. *Environment and Planning A* 46(9): 2080–2094.
- Holton G (1992) How to think about the 'anti-science' phenomenon. *Public Understanding of Science* 1: 103–128.
- Horst HA and Miller D (2006) The Cell Phone: An Anthropology of Communication. Oxford: Berg.
- Irwin A and Michael M (2003) Science, Social Theory and Public Knowledge. Maidenhead: Open University Press/McGraw Hill.
- Kitchin R (2014) The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. London: SAGE.
- Kitchin R and Lauriault T (in press) Towards critical data studies: Charting and unpacking data assemblages and their work. In: Eckert J, Shears A and Thatcher J (eds) *Geoweb and Big Data*. Lincoln, NE: University of Nebraska Press.
- Lash S (2006) Life (vitalism). Theory, Culture & Society 23(2–3): 323–329.
- Law J (2004) After Method: Mess in Social Science Research. London: Routledge.
- Lupton D (in press) The Quantified Self: A Sociology of Self-Tracking Cultures. Cambridge: Polity Press.
- Lyon D (2002) Everyday surveillance: Personal data and social classifications. *Information, Communication & Society* 5(2): 242–257.
- Lyon D and Bauman Z (2013) Liquid Surveillance: A Conversation. Oxford: Wiley.
- Lyotard J-F (1984) The Postmodern Condition: A Report on Knowledge. Manchester: Manchester University Press.
- Madden M (2014) Public Perceptions of Privacy and Security in the Post-Snowden Era. Pew Research Internet Project. Available at: http://www.pewinternet.org/2014/11/12/public-privacy-perceptions/#
- Marres N (2012) Material Participation: Technology, the Environment and Everyday Publics. Basingstoke: Palgrave Macmillan.
- Michael M (2009) Publics performing publics: Of PiGs, PiPs and politics. *Public Understanding of Science* 18: 617–631.

Michael M (2012) 'What are we busy doing?' Engaging the idiot. *Science, Technology & Human Values* 37(5): 528–554.

Nowotny H, Scott P and Gibbons M (2001) Re-Thinking Science: Knowledge and the Public in an Age of Uncertainty. Cambridge: Polity Press.

Räsänen M and Nyce JM (2013) The raw is cooked: Data in intelligence practice. *Science, Technology & Human Values* 38(5): 655–677.

Ritzer G (2014) Prosumption: Evolution, revolution, or eternal return of the same? *Journal of Consumer Culture* 14(1): 3–24.

Rogers R (2013) Digital Methods. Cambridge, MA: The MIT Press.

Ruppert E (2011) Population objects: Interpassive subjects. Sociology 45(2): 218–233.

The Wellcome Trust (2013) Summary Report of Qualitative Research into Public Attitudes to Personal Data and Linking Personal Data. London: The Wellcome Trust.

Thrift N (2014) The 'sentient' city and what it may portend. *Big Data & Society* 1(1). Available at: http://bds.sagepub.com/content/1/1/2053951714532241.full.pdf+html

Totaro P and Ninno D (2014) The concept of algorithm as an interpretative key of modern rationality. *Theory, Culture & Society* 31(4): 29–49.

Welsh I and Wynne B (2013) Science, scientism and imaginaries of publics in the UK: Passive objects, incipient threats. *Science as Culture* 22(4): 540–566.

Wynne BE (1995) The public understanding of science. In: Jasanoff S, Markle GE, Peterson JC and Pinch T (eds) *Handbook of Science and Technology Studies*. Thousand Oaks, CA: SAGE, pp. 361–388.

Author biographies

Mike Michael is a Sociologist of science and technology and Professor of Sociology and Social Policy at the University of Sydney. His research interests include the public understanding of science, the relation of everyday life to technoscience and speculative methodology. Among his most recent publications are (with Marsha Rosengarten) the co-authored volume Innovation and Biomedicine: Ethics, Evidence and Expectation in HIV (Palgrave, 2013) and (with Jennifer Gabrys and Gay Hawkins) the co-edited volume Accumulation: The Material Politics of Plastic (Routledge, 2013). He is co-editor of *The Sociological Review*.

Deborah Lupton is a Centenary Research Professor in the News & Media Research Centre, Faculty of Arts & Design, University of Canberra. Her latest books are *Medicine as Culture*, 3rd edition (Sage, 2012), *Fat* (Routledge, 2013), *Risk*, 2nd edition (Routledge, 2013), *The Social Worlds of the Unborn* (Palgrave Macmillan, 2013), *The Unborn Human* (editor, Open Humanities Press, 2013), *Digital Sociology* (Routledge, 2015) and *The Quantified Self: A Sociology of Self-Tracking* (Polity, 2016). Her current research interests are in the social impacts of big data, self-tracking cultures, the digitization of pregnancy, parenting and children, academic work in the digital era and critical digital health studies. Her blog is This Sociological Life.