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Abstract. It is widely acknowledged that learners experience a variety of 
emotions while interacting with Intelligent Tutoring Systems (ITS), hence, 
detecting and responding to emotions might improve learning outcomes. This 
study uses machine learning techniques to detect learners’ affective states from 
multichannel physiological signals (heart activity, respiration, facial muscle 
activity, and skin conductivity) during tutorial interactions with AutoTutor, an 
ITS with conversational dialogues. Learners were asked to self-report (both 
discrete emotions and degrees of valence/arousal) the affective states they 
experienced during their sessions with AutoTutor via a retrospective judgment 
protocol immediately after the tutorial sessions. In addition to mapping the 
discrete learning-centered emotions (e.g., confusion, frustration, etc) on a 
dimensional valence/arousal space, we developed and validated an automatic 
affect classifier using physiological signals. Results indicate that the classifier 
was moderately successful at detecting naturally occurring emotions during the 
AutoTutor sessions. 
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1   Introduction 

It has been widely acknowledged that cognition, motivation, and emotion are the key 
components of learning. During tutorial sessions with Intelligent Tutoring Systems 
(ITS) or human tutors, learners experience a host of learning-centered emotions such 
as confusion, boredom, engagement/flow, curiosity, interest, surprise, delight, 
anxiety, and frustration. These affective states are highly relevant and influential to 
both the processes and products of learning [1]. Therefore, researchers in the 
interdisciplinary arena encompassing psychology, education, neuroscience, and 
computer science have recently been focused on understanding the relationship 
between affect and learning [1-4].  

Affect-sensitive ITSs aspire to detect and respond to learner emotions in order to 
improve learning gains along with increasing motivation and task interest [3]. These 



systems aim to reduce the gap between human tutors and computer tutors by 
endowing ITSs with a degree of emotional intelligence. Whether it is human or 
computer, a learning environment requires some degree of accuracy in classifying the 
learner’s affective states. Detecting affective states with reasonable accuracy is an 
essential challenge for achieving functional affect-sensitive ITS [5].  

There has been some research on learners’ affect recognition from facial 
expression, speech, posture and dialog [4, 6]. A study by Arroyo et al. [7] explored 
how students’ experience with tutoring systems shape their feelings and proposed a 
data-driven model for emotion using four sensors (camera, mouse, chair, and wrist).  
Physiological signal analysis is another possible approach to affect detection, and the 
focus of this paper. Here, heart rate, respiration, muscle activity, galvanic skin 
response, skin temperature, blood pressure etc might be suitable channels for 
recognizing affective states provided appropriate pattern recognition techniques are 
utilized. There is some evidence that some of these physiological signals correlate 
with the “basic emotions” such as anger, sadness, and disgust [5]. Unfortunately, 
these basic emotions are not very prominent in learning situations, at least for the 
short learning sessions with ITSs [8], where the learning-centered emotions listed 
above play a more prominent role. Challenges emerge during the process of collecting 
physiological data in learning interactions. Sensors for measuring physiological 
signals are often unsuitable for learning environments as they tend to interfere with 
learning activities. Due to these challenges, affect recognition with physiological 
signals is quite rare in educational settings (exception includes [9] ). It is important to 
note that recent advances in wearable physiological sensors circumvents some of 
these practical challenges and create new opportunities to infer learner affect from 
physiology. In this paper we revisit the physiological-based learning-centered affect 
detection problem by using machine learning techniques to classify affective states 
from learners’ physiological patterns (heart activity, skin response, respiration, facial 
muscle activity) during learning sessions with AutoTutor, an ITS with conversational 
dialogues [10]. 

It is important to emphasize two points before proceeding with a description of our 
Methods and Results. First, although several theories of emotion focus on categorical 
models, which consider discrete emotions such as fear, anger, etc, the concept, the 
value, and even the existence of such 'labeled' states is still a matter of considerable 
debate. Others have proposed dimensional models, where a person’s affective states 
are represented as a point in a multi-dimensional space such as a valence-arousal 
space (see [11] for a discussion). Russell and Barrett [11] proposed a theory that 
somewhat unites these two views. According to this theory, physiological features are 
not necessarily correlated with specific emotional states (discrete or categorical 
emotions), but instead to the underlying dimensions of these states. For example, 
there is some evidence that valence correlates positively with heart rate while arousal 
correlates positively with skin conductance level [12]. Perhaps the most defensible 
position is to adopt a model that incorporates both perspectives by mapping discrete 
emotions on a valence/arousal space. However, while such a mapping has been 
proposed for the basic emotions [11], no such empirically grounded mapping exists 
for the learning-centered emotions. One model has been proposed by Kort, Reilly, and 
Picard [13], however, this model has yet to be supported with empirical data. 
Consequently, one of the aims of this study is to provide an empirically grounded 



mapping of a set of discrete learning-centered affective states into a valence/arousal 
space. This was achieved by asking learners to provide self-reports of affect based on 
both categorical and dimensional (valence/arousal) models.  

Second, the present focus is on detecting naturally occurring affective states. This 
is an important point because many physiological-based affect detection systems have 
relied on artificially-induced emotions using different affect elicitation methods (e.g. 
photos, films, music, self imagining) [14, 15]. People express their emotions in 
variable ways, and the same emotion can be expressed differently in different 
situations. This raises the question of whether physiological-based affect detection 
will be equally effective in naturalistic contexts. We addressed this question by 
providing a comparison of the classification performance of affect detection from 
physiological data for two scenarios: (a) induced emotions via IAPS (International 
Affective Picture System) [16] and (b) emotions that naturally arise during 
interactions with AutoTutor.   

2   Method 

2.1   Participants, Materials and Procedures 

Participants were 20 healthy volunteers from the University of Sydney. Participants’ 
age ranged from 18 to 30 years and there were 8 males and 12 females. Participants 
were instructed not to take any drugs and to avoid caffeine consumption prior to the 
experiment. Participants signed an informed consent prior to the experiment. The 
experiment took approximately two hours and participants were rewarded with $20 
book vouchers for their participation.  

Participants were equipped with physiological sensors that monitored 
electrocardiogram (ECG), facial electromyogram (EMG), respiration, and galvanic 
skin response (GSR). The physiological signals were acquired using a BIOPAC 
MP150 system with AcqKnowledge software at 1000 samples per second for all 
channels. ECG was collected with two electrodes placed on the wrists. Two channels 
of EMG were recorded from the zygomatic and corrugator muscles respectively. A 
respiration band was strapped around the chest and GSR was recorded from the index 
and middle finger of the left hand. 

The experiment consisted of two parts. The first part involved a 40 min recording 
of physiological signals while participants viewed emotionally charged photos from 
the IAPS collection [16]. A total number of 90 images (three blocks of 30 images 
each) for 10 seconds each were presented, followed by 6 seconds pauses between the 
images. The images were selected so that the IAPS valence and arousal scores for the 
stimuli spanned a 3×3 valence/arousal space (IAPS normed ratings). Participants also 
self-reported their emotions by clicking radio buttons on the appropriate location of  
3×3 valence/arousal grid after viewing each image [17]. 

In the second part of the experiment, subjects completed a 20-minute tutorial 
session with AutoTutor on topics in computer literacy. AutoTutor is a dialogue based 
ITS for Newtonian physics, computer literacy, and critical thinking. AutoTutor’s 
dialogues are organized around difficult questions and problems (called main 



questions) that require reasoning and explanations in the answers [10]. During this 
interaction, a video of the participant’s face and a video of the computer screen were 
recorded. Participants made affect judgments (video annotation) immediately after the 
learning session at 10 seconds fixed intervals over the course of viewing their face 
and screen videos [6]. They were asked to provide two types of judgments: (a) 
categorical judgments which included eight learning-centered affective states 
(frustration, confusion, flow/engagement, delight, surprise, boredom, curiosity, and 
neutral) [6, 9] and (b) dimensional judgments consisting of valence/arousal (low, 
medium, high) ratings using the 3×3 grid described earlier.  

2.2   Computational Models for Affect Detection 

The Augsburg Matlab toolbox [18] for physiological signal processing was used for 
extracting statistical features. Video annotations were synchronized with the 
physiological signals and features were extracted using a 10 seconds window. The 
feature vectors were also labeled with the corresponding video annotations (1-3 
degrees of valence/arousal). A total of 214 features were extracted from the five 
physiological signals and were merged to achieve feature-level fusion. Some features 
were common for all signals (e.g. mean, median, and standard deviation, range, ratio, 
minimum, and maximum) and others were related to their characteristics (e.g. heart 
rate variability, respiration pulse, frequency). The detailed description of the features 
can be found in [18]. To reduce the dimensionality of the large number of features, 
chi-square ( 2) feature selection was used for ranking the ten best features. The 2 
feature selection technique evaluates features by computing the value of the chi-
squared statistic with respect to the class, in this case affective states.  

The Waikato Environment for Knowledge Analysis (Weka), a data mining package 
[19], was used for classification.  We selected three machine learning algorithms; k-
nearest neighbor (KNN), linear support vector machine (SVM), and decision trees for 
classification Finally, a Vote classifier for combining classifiers was applied with the 
average probability rule [20]. The training and testing for both IAPS dataset and 
AutoTutor dataset was performed separately with a 10-fold cross validation. The 
kappa statistic was used as the overall classification performance metric and the F-
measure (from precision and recall) was calculated as an indication of how well each 
affective state was classified. For the classification scores of precision (P) and recall 
(R), the F-measure (F1) is calculated by; F1=2((P*R)/(P+R)). 

3   Results and Discussion 

3.1   Discrete Emotions Mapping onto the Dimensional Valence/Arousal Plane  

The key self-reported states were neutral (20%), boredom (21%), confusion (15%), 
flow/engagement (14%), curiosity (10%), and frustration (14%), whereas surprise 
(2%), delight (4%) were comparatively rare. Mapping of the discrete affective states 
onto the dimensional (valence/arousal) plane was performed by computing the mean 



valence and arousal (across 20 participants) associated with each emotion and 
projecting these on the valence/arousal space. The mapping is presented in Figure 1. It 
should be noted that a small translation procedure was adopted so that neutral was 
mapped onto the origin. 
 

 
Fig. 1. Mapping of the discrete emotion labels on the valence/arousal plane (horizontal & 
vertical axes representing dimensions for valence and arousal respectively).   

As Figure 1 indicates, surprise has no notable valence but has the highest arousal. 
In contrast, flow/engagement has arousal levels similar to neutral but is positively 
valenced. Delight and curiosity are characterized by high arousal and valence 
(especially delight). Both confusion and frustration have high arousal and negative 
valence. As could be expected, boredom is also negative valence with lower arousal. 
Most previous studies [e.g. 1, 6, 10] only used discrete affective states to annotate ITS 
interactions. Our mapping of discrete affective states onto a dimensional model 
(based on the empirical data) is a novel approach to combining results for the two 
models. 

3.2   Classification Results from Physiological Signals  

In this section we present the classification results for detecting 1-3 degrees (low, 
medium, high) of valence and arousal from physiological features, and leave 
classification of discrete emotions as part of future work. Self reports normally 
produce highly skewed class distribution, therefore up sampling and down sampling 
techniques are commonly used. For the initial analysis presented in this paper, we 
selected datasets/subjects with approximately balanced distribution of classes without 
using any up/down sampling techniques. Finally, the classes with extremely low or 
high number of instances were removed at the subject level. Separate classification 
analyses were performed for the valence and arousal dimensions. Table 1 presents the 
mean and standard deviation of kappa scores across learners for detecting 1-3 degrees 
of valance and arousal from physiological features (for both IAPS and AutoTutor 
sessions).  



Table 1.  Mean (M) and standard deviation (SD) of kappa scores for detecting 1-3 degrees of 
valance and arousal from physioligical signals across leaners 

Affect IAPS AutoTutor 
M SD M SD 

Valence 0.49 0.27 0.35 0.22 

Arousal 0.31 0.16 0.23 0.03 

 
We note that the overall performance (kappa scores) of affect detection using IAPS 

is higher than performance during the AutoTutor interaction. This is expected because 
the IAPS is designed to elicit basic emotions of higher intensity than the learning 
emotions obtained over the course of the AutoTutor sessions. Despite the lower 
overall performance, however, kappa scores are clearly greater than chance (kappa = 
0) for the naturalistic emotions. In a previous study by D'Mello & Graesser [6] kappa 
score of 0.29 was achieved from face, dialog and posture using a similar AutoTutor 
setup. This indicates that learners’ valence and arousal can be detected from 
physiological signals and the performance is quite satisfactory even when compared 
to controlled emotion elicitation.  

While the kappa score provides a measurement for the overall performance, the F-
measure indicates how well the individual affective categories were classified.  Figure 
2 presents the mean and standard deviation of the F-measure for detecting 1-3 degrees 
of valance and arousal from physiological signals across learners for both IAPS and 
AutoTutor sessions.  

 

 
Fig 2. Mean and standard deviation of the F-measure for detecting 1-3 degrees of valance and 
arousal from physiological signals across learners for both IAPS and AutoTutor sessions  

Observing the results from Figure 2 separately for IAPS and AutoTutor; the 
performance (F-measure) of detecting the degrees of valance and arousal for IAPS 
increases from low to high for both valance and arousal.  On the contrary, during 
AutoTutor sessions, a curvilinear relationship was observed. Highest performances 
occur for low valence and low arousal and also for high valence and high arousal. 
Performance for medium valence and medium arousal is in between these two 



extremes. While comparing results for IAPS and AutoTutor, we note that the 
performance of detecting low valence and low arousal from physiology during 
naturalistic interactions is comparable to controlled emotion elicitation. The 
performance of detecting medium and high valence/arousal is also quite satisfactory. 
A paired t-test for comparing the F-measure means for the six categories of IAPS 
(M= .70) and AutoTutor (M= .64) revealed no significant difference (p >0.05), which 
indicates that the accuracy of detecting affective states were not very different for the 
two models.  As part of future work, this could be very suitable for creating a model 
where the classifier can be trained using the IAPS dataset and tested for the 
AutoTutor interactions.   

4   Conclusion 

The implementation of an adaptive, multimodal, robust affective sensitive ITS with 
sufficient reliability is still far from reality. Despite the challenges of affect 
recognition from physiological signals, this research presents an automatic affect 
classifier to detect learners’ affective states from multichannel physiological signals 
with the support of a systematic experimental setup, feature selection techniques, and 
machine learning approaches. Results show that for the AutoTutor interaction, 
valence and arousal can be classified with moderate accuracy from multichannel 
physiology. Other modalities such as facial expressions, dialog and posture features 
[6] can be included along with physiological channels which may improve the 
performance of affect detection during ITS interactions. Classification of descrete 
affective states and finding their relationships with the dimensional model using 
multichannel physiology will be explored in the future.  
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