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Abstract— Body-worn sensor systems will help to revolutionize
the medical field by providing a source of continuously collected
patient data. This data can be used to develop and track plans
for improving health (more sleep and exercise), detect disease
early, and provide an alert for dangerous events (e.g., falls and
heart attacks). The amount of data collected by even a small
set of sensors running all day is too much for any person
to analyze. Signal processing and classification can be used to
automatically extract useful information. This paper presents
a general classification framework for wireless medical devices
and reviews the available literature for signal processing and
classification systems or components used in body-worn sensor
systems. Examples focus on electrocardiography classification
and signal processing for inertial sensors.

Index Terms— Classification, embedded systems, healthcare,
signal processing.

I. INTRODUCTION

IN THE past, doctors directly provided long-term personal
care to all patients. As medicine became more sophisticated

and effective, many other types of caregivers, such as nurses,
nurse practitioners, technicians, and specialists have been
added to provide better care at lower cost. Healthcare has been
commoditized and patients are now treated on a per-complaint
basis rather than a whole-life approach, and patients are less
likely to develop a long-term relationship with their physician.

In 2007, a group of four prominent physician associations
proposed the Patient-Centered Medical Home (PC-MH) ini-
tiative to improve patient care and reduce costs while encour-
aging a longer-term and a more personal physician-patient
relationship [1]. The secret to this initiative is using cutting
edge technology as a form of virtual caregiver. This technology
can be used for communication and care coordination and
for ubiquitous and targeted data collection and monitoring.
Some of the data required will be added manually by patients
or caregivers, but most can come directly from sensors worn
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by the patient. These sensors can constantly collect relevant
and personalized information that will help warn of dangerous
health situations such as falls [2] and heart attacks [3] as well
as overall health trends [4].

The sheer volume of data from such systems can be
overwhelming and it takes innovative signal processing
algorithms to extract useful and relevant information.
Caregivers do not have the time to personally analyze this
data, making it extremely important to automate the process
of summarizing the data, highlighting relevant sections, and
generating alerts in response to certain observed events. This
kind of intelligent data analysis is broadly referred to as
classification in literature.

This paper evaluates data reduction and classification
algorithms developed to support this new generation of
medical embedded sensor systems. We start by presenting a
generic data processing pipeline for on-body sensor systems
which will model most such systems described in litera-
ture. We then provide a literature review of techniques and
algorithms available for each stage in the pipeline. Particular
attention is devoted to examples from electrocardiography
(ECG signals) and inertial sensor systems. ECG is interesting
because physicians already use portable devices to gather data
from certain patients. Furthermore, the signals are well-studied
and physicians have very particular ways of classifying and
analyzing the data, making it very easy to determine the
accuracy of automated classification systems. Inertial sensor
systems are promising because many medical conditions affect
how people move and act. In addition, motion data is captured
from sources distributed around the body, requiring innovative
classification techniques. Previous surveys on BSNs [5], [6]
focus on reviewing either application development or com-
munication technologies for ubiquitous healthcare. Although
signal processing algorithms in this paper are presented in the
context of classification, most challenges are generalizable to
other applications of the medical embedded systems.

II. GENERIC SIGNAL PROCESSING MODEL

In wireless medical embedded systems, sensor nodes are
typically attached to the human body in order to collect useful
and timely physiological information about their subjects.
This configuration is called a Body Sensor Network (BSN).
Often, some form of processing is needed to summarize the
data and increase the signal-to-noise ratio to make it useful.
Similarly, warning systems, such as fall and heart-attack
detection systems, must be able to automatically detect events.
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Fig. 1. Generic signal processing flow for classification applications.

Simple statistical tools, such as averages, are not enough
since the useful information may be in the morphology of the
signal. As example, the important information in an ECG is the
shape and relative timing of specific parts of the heart signal.
This information can be extracted with pattern recognition
(classification) techniques. Complicating matters is the limited
battery life of these devices. Wearability favors small devices,
and convenience necessitates infrequent recharging. Since the
highest power drain is often communication, it is necessary
to handle some of the signal processing on the devices
themselves.

Fig. 1 shows a generic signal processing model for classifi-
cation applications. The signal processing flow has four stages.
A brief description of each stage follows.

Preprocessing (Section III): Data is sampled from the
sensors and filtered. The method and rate of sampling must
take into account the application needs and the available
hardware. After the data is sampled, it must be filtered to
remove noise.

Signal Transformation (Section IV): Signal transformation
prepares the data for classification. It starts out by dividing
the signal into segments. These segments can represent com-
plete events, or they can be fixed and possibly overlapping
intervals. Each segment has a multidimensional (feature) vec-
tor extracted from it which will be used for classification.
This transformation frequently reduces the data required to
represent the segment. These feature vectors can be extracted
using statistical or structural techniques. In the statistical
processing, a set of statistical and morphological features are

extracted from the signal segment. This set is turned into a
feature vector. In the structural processing, sensor readings are
transformed into a sequence of symbols that preserve physical
structure of the original signal.

Centralized Data Processing (Section V): Local data is
transmitted directly to a central node for final analysis. Before
transmission, some analysis can optionally be done at the
local level to reduce that amount of data transmitted. For a
single-sensor system, the classification can be done completely
locally, making the sensor the same as the central node.

Distributed Data Processing (Section VI): Local decisions
that are made by individual nodes are further processed either
by a central node (base station) or through collaboration of
the sensor nodes (in-network processing) to generate a final
decision about the current action. For instance, in action
recognition, a final decision can be made using either a data
fusion or a decision fusion scheme. In the data fusion scheme,
features from all sensor nodes are fed into a central classifier.
The classifier then combines the features to form a higher
dimensional feature space and classifies movements using the
obtained features. In the decision fusion approach, however,
each sensor node makes a local classification and transmits
the result to a central classifier where a final decision is made
according to the received labels.

Variations: This is the basic outline of the flow and trans-
formation of data that is initially captured by the sensors
and eventually used. While it is possible to perform all but
the distributed data processing on the local sensor nodes, it’s
possible to transmit data from a previous step and perform
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these steps somewhere else. Many of these steps may be
performed in a distributed manner: for instance, segmentation
sometimes depends on data sharing between sensor nodes to
ensure that all sensor nodes use the same segments. Also,
many of these steps are optional, with filtering and local
information extraction commonly left out.

III. PREPROCESSING

Preprocessing includes decisions about how and when to
sample sensor data and noise filtering. Preprocessing is about
transforming the signal in bulk without separating out events
or classifying the data. This preprocessing prepares the data
for later steps. Even in pure monitoring applications where no
classification is performed, these steps are still required.

A. Data Sampling Approaches

There are several methods of sampling: fixed-rate, variable
rate, adaptive sampling, and compressed sensing. Furthermore,
if required, the bit resolution of sensor readings can be tuned
in order to lower power consumption of the analog-to-digital
converter.

1) Fixed Rate Sampling: The most convenient and simple
form is fixed-rate sampling. However, if the hardware supports
it, some of the other methods can decrease power required
for sampling or communication. For fixed-rate sampling, the
sampling frequency must be chosen to satisfy the Nyquest
criterion.

2) Variable Rate Sampling: A variable sample rate gener-
ator can be designed to produce different sample rates for
variable resolution [7]. It consists of a clock generator, sam-
pling circuit, and a multiplexer. The clock generator generates
highest needed sample rate, and then sends it to the sampling
circuit and the multiplexer. The sampling circuit produces
several clocks, each at half the frequency of the previous and
then sends them to the multiplexer. The multiplexer chooses
the clock with a sample rate select signal from MCU. This
design provides the capability of variable rate sampling. The
rate can be changed dynamically based on power needs and
the current type of analysis.

3) Adaptive Sampling: Adaptive sampling is based on vari-
able rate sampling, but automatically changes the sampling
rate based on the data. It is a practical method to reduce
the sample data volume since the frequency contents of the
signals vary with time. In [8], a low-power analog system is
proposed, which adjusts the converter clock rate to perform a
peak-picking algorithm on the second derivative of the ECG
signal.

4) Compressed Sensing: The work proposed in [9] for
packet loss mitigation is based on Compressed Sensing (CS),
an emerging signal processing concept, wherein significantly
fewer sensor measurements than that suggested by Nyquist
sampling theorem can be used to recover signals with arbi-
trarily fine resolution. CS relies on the assumption that the
signal of interest is sparse in some basis representation with
only M non-zero elements, where M � N and N is the signal
dimensionality. Many medical signals are sparse, making them
ideal for this type of sampling.

B. Sampling Rate and Resolution

Researchers use a variety of bit rates depending on the
application and problem constraints. Certain researchers have
investigated the effect of sampling frequency and bit resolution
for classification of human modes of locomotion using body-
worn acceleration sensors [10]. They have shown that good
recognition performance can be achieved with 20H z sampling
frequency and 2 bit-resolution without much impact on the
recognition performance. Other studies have also reported a
sampling rate of around 20 Hz for analyzing human move-
ments [11]–[13].

Using a more analytical approach based on power spectrum,
it has been shown that in most cases a sampling rate between
40 Hz and 50 Hz is sufficient for analysis of human move-
ments [14]–[16]. In these studies, power spectrum graphs were
used to find the highest frequency of the signal, suggesting
a sampling frequency of twice the highest frequency of the
signal would suffice to meet the Nyquist frequency. For ECG
signals, typical sampling rates range from 250 to 500 Hz [17]
or even up to 1000 Hz when high time-frequency resolution
ST segment analysis is required, while the resolution of the
quantizer could be as low as 10 bits or as high as 24 bits [18].

C. Filtering

The level of complexity of the filtering algorithm highly
depends on the application of interest and the type and quality
of sensor readings. In many cases, a simple moving average
filter would suffice to reduce the effect of noise. One such
applications is use of accelerometer sensors for movement
classification. In contrast, if details of the signal affect the
outcome of the classification algorithm, more complex filtering
is required in order to clean the signal. One application with
these requirements is monitoring ECG signals.

1) Moving Average: For personal health monitoring [19],
the raw accelerometer data is filtered and preprocessed. The
filtering includes a moving average filter to eliminate high
frequency movement artifacts, and separate the low and high
frequency components of the acceleration signal. The choice
of the window size for the moving average filter relies on two
objectives 1) the cutoff frequency needs to be low enough to
effectively bypass unnecessary motions such as tremors that
occur at higher frequencies than normal movements and 2) the
cutoff frequency must be high enough to capture the data of
interest.

D. ECG Filtering

ECG signals are a perfect case study for different filtering
techniques. A number of specific noise categories have been
identified, and a significant body of research has been built
around filtering techniques needed to remove each type of
noise. In the following paragraphs, various noise sources and
the method of removing or identifying them are presented.

1) Baseline Drift: Baseline drift appears as a very slow
varying frequency component causing the ECG waveform to
wander in levels much greater than the nominal amplitude
of the regular ECG waves. This type of noise is mostly
caused by respiration which modulates the impedance between
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the measuring electrodes. Since this type of distortion is
concentrated in frequencies below 1 Hz, it can be removed
with a high-pass filter. However, a finite impulse response
(FIR) filter that can efficiently remove frequency components
below 0.5 Hz in a signal sampled at 250 Hz or even more needs
a very large number of coefficients, making it impractical for
resource-constrained real-time systems. An alternative would
be to employ an infinite impulse response (IIR) filter which
requires less coefficients but in that case there are two major
concerns: (a) IIR filters may cause unwanted distortions in
signal morphology and (b) implementation of IIR filters on
fixed-point microprocessors is challenging since IIR filters are
very sensitive to coefficient quantization (as a result a hardware
implementation of the filter might be preferable). Another way
of removing baseline drift is to employ the Discrete Wavelet
Transform (DWT) up to a certain scale, which essentially acts
as a filter bank on the signal and to zero-out the coarsest
scales approximation coefficients that correspond to the lowest
frequency components in the signal [20].

A different approach is to utilize median filtering to remove
the DC drift. In this case a moving median filter is employed
in order to remove P, QRS and T waves from the trace. The
residual is the pure baseline drift which can then be subtracted
from the original signal. In this case, care needs to be taken in
choosing the appropriate window size for the filter. This choice
can significantly affect the quality of the filtered signal, since
a window size that is not big enough will tend to remove
significant information from the smaller waves, e.g. the P and
T waves. This can be seen in Fig. 2 where a segment from the
Record 212 of the MIT-BIH Arrhythmia database (which can
be accessed at Physionet [17]) has been plotted along with the
result of employing a median filter that is equal to 1 second
of sampling, 1/2 a second and 1/4 of a second.

2) EMG Noise: EMG noise is interference on the ECG
signal due to muscle contractions. EMG induced noise presents
a more challenging issue, since this type of noise can spread
through the frequencies of interest in the ECG. In this case,
exact reconstruction of the original distortion free signal is
impossible, so the challenge now is to quantify the amount
of noise in the waveform and to decide whether it is still
clinically usable or corrupted to such a level that it should
be constituted unusable. An efficient method for reducing
noise components spread across the whole signal spectrum
is wavelet thresholding [21]. This technique comprises of
the following steps: Discrete Wavelet Transform (DWT);
Scale-dependent threshold estimation; Thresholding; Signal
reconstruction from the thresholded coefficients. Wavelet
denoising can be utilized to remove efficiently in-band noise
(even power-line interference). The redundant version of the
wavelet transform which is referred to as undecimated or
stationary wavelet transform (UWT or SWT), will yield better
results at the expense of more computations. This can be seen
in Fig. 3 where a clean ECG has been contaminated with
white noise resulting in 5 dB SNR. UWT denoising yields an
SNR of 14.51 dB, while DWT results in 12.69 dB and more
signal distortions. However an important issue to note here is
that denoising algorithms or filters tend to introduce unwanted
distortions in the ECG waveform [22]. These distortions
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Fig. 2. Effect of the median filter’s window length on the reconstruction
quality of the ECG. (a) Original signal. (b) Median filtering (window
length = 1 sec). (c) Median filtering (window length = 1/2 sec). (d) Median
filtering (window length = 1/4 sec).

might not be easily identifiable with visual inspection and
they can also distort the values of clinically relevant signal
features, which in the worst case might affect the final ECG
classification. As a result when employing such algorithms
in a clinical scenario whereby the ECG trace will be used for
more than just heart rate estimation, the effect of the de-noising
procedure will need to be carefully evaluated.

3) Motion Artifacts: Motion artifacts can introduce severe
noise in the signal and can, in the worst case, corrupt it to
such an extent that it might be rendered clinically unusable.
In such a case, appropriate logic needs to be utilized to
detect such cases [23], otherwise if we fail to identify such
events the result will be erroneous feature extraction and thus
incorrect parameter estimation and pattern classification. This
type of interference can be very effectively removed if a
continuous and reliable noise reference is available. In that
case adaptive filters can be used to reject the unwanted signal
components [24].

As mentioned above, if the noise component has severely
corrupted the information content of the ECG signal, intelli-
gent algorithms could be utilized to identify these cases. In
2011, the Computing in Cardiology Conference [25] hosted
a challenge for the development of such an algorithm [26].
Several near real-time algorithms were developed that utilize
various features to identify corrupted ECG traces. Examples
of features include the distribution of the frequency content
of an ECG waveform, the autocorrelation of a signal or
the cross-correlation between different ECG leads, statistical
features of an ECG signal such as higher order moments and
the performance of beat detection algorithms across multiple
leads [27]–[29].
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Fig. 3. (a) Noise-free ECG. (b) ECG with AWGN (5-dB SNR). (c) UWT
denoised ECG (14.51-dB SNR). (d) DWT denoised ECG (12.69-dB SNR).

Artifacts in the ECG can also be very effectively removed by
utilizing the redundancy of multiple simultaneously recorded
ECG leads. In that case well-known algorithms such as
Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) can be employed to decompose
the multi-channel signal in several orthogonal or independent
components [30], [31]. The next step is to identify the signal
components that correspond to noise and then after eliminat-
ing those components the denoised version of the signal is
acquired by reversing the transformation. The major drawback
of such algorithms is their computational complexity and the
fact that they cannot be run in real-time.

Finally, an alternative approach to artifact removal from the
ECG is model-based filtering. Sameni et al [32] developed
a Bayesian filtering framework based on a non-linear ECG
model whose parameters are estimated on-line using a Kalman
filter. A similar approach is presented in [33] where the authors
make use of an adaptive Kalman filter that makes use of an
estimation of the measurement noise to enhance ambulatory
ECG recordings.

4) Power-Line Interference: Power-line interference intro-
duces a noise component centered around the power-line
frequency (e.g. either 50 Hz or 60 Hz). This type of distortion
can be efficiently removed with an IIR notch filter [34]. Such a
filter can be efficiently implemented on resource constrained
platforms by utilizing multiplier-free recursive running-sum
filters [35].

IV. SIGNAL TRANSFORMATION

In the signal transformation step, the data is transformed
into a form more useful for classification. First, the signal
is divided into segments, then a multi-dimensional feature
vector is extracted from each segment. The segments may
be either overlapping or mutually exclusive. In many cases,
segments are chosen to represent a complete event such as a

full heartbeat, a complete motion, or a possible fall event. Each
segment is assigned a vector of numbers extracted based on
the signal data in the segment. This vector is called the feature
vector and can either be extracted using statistical or structural
methods. This vector is used in the next step to classify the
segment.

A. Segmentation and Annotation

Many information processing and extraction algorithms,
such as classifiers, are designed to extract information about
specific events or discrete time intervals. Segmentation algo-
rithms divide continuous data streams into discrete time
intervals of the type expected by the information processing
step, while annotation algorithms locate and label specific
events. Segmentation implicitly filters out time intervals with
nothing of interest. For simplicity, segmentation is often dis-
cussed as a separate step from information processing, but
in many instances a feedback loop between the segmentation
module and the information processing module is required
for precise segmentation. Several segmentation techniques are
presented.

1) Fixed Size Segments: Segmentation is approached in a
variety of ways in the literature. The simplest method is to use
fixed-size segments. This is computationally simple, but does
not divide the signal in a meaningful way. It is appropriate for
long-duration actions that are stationary or cyclo-stationary.
Several authors classify fixed-size segments independently of
other segments [36]. This can result in outliers and disconti-
nuities. This approach is simply impractical for signals that
have specific predefined morphology such as ECG.

2) Energy-Based Segmentation: Another approach is to
look at the energy content of the sensed data. Quwaider and
Biswas [37] divide actions, which they refer to as postures,
based on the activity level measured with accelerometers.
With high-activity postures, such as running, the postures are
identified based on energy level on each limb. For relatively
quiet postures, such as sitting and standing, they employ a
Hidden Markov Model used on radio signal strength
differences between sensor nodes. With this they can differen-
tiate between sitting and standing postures. Other possibilities
include using the signal energy for segmentation, or an unre-
lated source of data. In [38], the standard deviation was used
to label intervals as actions or rests for each sensor. While this
worked well for actions separated by inactivity, sometimes
actions often occur one after another with no separation.
Sometimes independent data can be used to easily segment
actions using energy. For instance, Ward et al. recognized
several workshop activities such as taking wood out of a
drawer, putting it into the vice, getting out a hammer, and
more. They avoided the problem of segmenting accelerometer
data by segmenting the data using the presence or absence of
sound, and then identified the action using accelerometer data
and a Hidden Markov Model (HMM) classifier [39].

3) ECG Beat Detection: Heart beat detection mainly con-
sists of determining the onset of the R wave in the QRS
complex. A key observation here is that the bandwidth of the
wave of interest (e.g. the QRS complex) is mainly concentrated
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in the 1-40 Hz frequency range. As a result, it is therefore a
good strategy to apply appropriate filters that will isolate these
frequencies and that will diminish the contribution of other
spectral components, e.g. P and T wave, baseline wander, etc.
Perhaps the most well-known algorithm for the task of ECG
beat detection is the one by Pan and Tomkins [40], which was
later refined by Hamilton and Tomkins [41]. This algorithm
comprises of the following stages: Low-pass filtering, High-
pass filtering, Differentiation, Squaring, Moving-average, Rule
application and adaptive thresholding.

The advantage of this algorithm is that the filters it utilizes
are computationally inexpensive (small number of coefficients
which are also all powers of two) and that the logic required
to detect a beat is simple, the algorithm can thus be imple-
mented in real-time with a small time delay (which is mainly
introduced by a search back algorithm to remove spurious
detections). The steps described above for detecting the R
peaks is illustrated in Fig. 4 and Fig. 5.

A wide variety of other methods for QRS detection exist
in the biosignal processing literature. A very good review
of software based methods for this task is given by [42],
where not only the accuracy (given the fact that the recorded
sensitivity of the Hamilton-Tomkins detector is 99.69% [41])
but also the computational complexity and real-time operation
of each method is evaluated. Examples of other popular
techniques for R peak identification include: counting the
zero-crossings [43], wavelet-based methods [44], [45], filter-
banks [46] and digital filters [47].

The method described in [45] which utilizes the wavelet
transform, has been extended by Martinez et al. [48] and this
newer version has been successfully implemented in [49] on
an embedded wearable sensor platform where it can operate
in real time. This technique consists of decomposing the ECG
signal in multiple scales and then employing mathematical
properties of these decompositions to detect irregularities
(such as high-frequencies, i.e. peaks) that are consistent across
several scales. Finally, Tabakov et al. [50] have also imple-
mented an online digital filter approach for ECG filtering
and QRS detection, which yields high accuracy and is also
operational in real-time.

B. Statistical Feature Extraction

The primary goal of recognition algorithms is supervised or
unsupervised classification. The design of a recognition system
requires careful attention to the information extraction. Among
the various frameworks in which information extraction has
been traditionally formulated for recognition systems, the
statistical processing approach has been most intensively
studied and used in practice. In the statistical processing, the
input data will be transformed into a reduced representative
set of features. If the extracted features are carefully chosen,
it is expected that the features will contain the relevant
information from the input data in order to perform the desired
task using this reduced representation instead of the full
size input.

In the BSN systems, the statistical feature extraction
algorithms can be grouped in three main categories.

(a)

(b)

(c)

Fig. 4. First two steps of the Pan–Tomkins algorithm. (a) Original signal.
(b) Band-filtered signal. (c) Derivative of band-filtered signal.

(a)

(b)

(c)

Fig. 5. Final three steps of the Pan–Tomkins algorithm. (a) Squared signal.
(b) Moving average. (c) Peal detection.

1) Time-domain features, 2) Frequency-domain features, and
3) Geometric subspaces.

1) Time-Domain Features: Authors in [51] proposed a
feature extraction method based on genetic programming to
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extract discriminative features robust to sensor displacement
for activity and gesture recognition from body-worn accelera-
tion sensors. The extracted features from each sensor node
are statistical time-domain features including mean value,
variance, signal energy, zero crossing rate and correlation
between different sensor axes.

In [52], feature extraction of the ECG biometrics is carried
out as follows: Firstly, the RR interval values are extracted.
Secondly, each RR value is quantized to a positive integer
of w bits, where w is a quantization parameter. Thirdly, a
set is obtained in the timing order where the elements are
m consecutive quantized RR values. In this way, the ECG
biometric features are finally represented as an ordered set.

2) Frequency-Domain Features: Studies show in gait recog-
nition both magnitude and phase spectra are effective gait sig-
natures. In [53], authors proposed a gait recognition approach
using spectral features of horizontal and vertical movement of
ankles in a normal walk. They used an integration of magni-
tude and phase spectra for gait recognition using AdaBoost
classifier. At each round, a weak classifier evaluates each
magnitude and phase spectra of a motion signal as dependent
sub-features, then classification results of each sub-feature are
normalized and summed for the final hypothesis output.

Authors in [54] investigate ear-worn accelerometers for
the development of a gait analysis framework. In order to
observe the multi-resolution properties of the acceleration
signals across both time and frequency, the wavelet transform
was used. The DWT coefficients were selected that provide a
compact representation of a signal in time and frequency that
can be computed efficiently (O(n)).

To reduce the dimensionality of recorded data, authors
in [55] extracted a set of features for tracking of human
activities. The feature set consists of frequency and time
domain features which includes linear and mel-scale FFT
frequency coefficients, cepstral coefficients, spectral entropy,
band pass filter coefficients, integrals, mean and variances.

3) Geometric Subspaces: An information-theoretic criterion
is introduced for training a feature extractor independently of
the classifier in [56]. The proposed method uses nonparametric
estimation of Renyi’s entropy to train the extractor by maxi-
mizing an approximation of the mutual information between
the class labels and the output of the feature extractor.

Authors in [57] described a gait classification techniques
based on data obtained using a body area sensor network plat-
form named TEMPO 3. They used a linear feature extraction
technique named MRMI-SIG that is optimized to separate data
classes. In [58], in order to diagnose cardiac abnormality such
as Ventricular tachycardia, authors applied a novel system to
analyze and classify compressed ECG signal by using a PCA
for feature extraction and k-mean for clustering of normal and
abnormal ECG signals.

C. Structural Feature Extraction

In structural feature extraction, all data is evaluated accord-
ing to a set of rules. These rules can be based on a physical
model or obtained through pattern recognition techniques.
Structural feature extraction matches the data to a model.

In the physical model, the model is based on human analysis
and physics and the matching works by matching the sensed
data to expected data. In the semi-physical model, the data
is matched to a predefined model using standard pattern
recognition techniques, such as a HMMs. Finally, in the
unsupervised structural model, the model itself is determined
with unsupervised pattern recognition techniques.

1) Physical Model: Fitting observations to a model, can
be used as one method to interpret human motion. For most
object model recovery, the process should be insensitive to
lighting, position, and size. In modeling human motion, the
recovery process should not be sensitive to clothing or any
other features specific to a particular individual. Furthermore,
unlike most objects, the human body is composed of a large
number of parts which can move non-rigidly with respect to
one another.

Using gait as a biometric is of increasing interest since it
is non-invasive and can be measured without subject contact
or knowledge. In [59] and [60], the dynamics of the models
are derived from medical studies, which indicate that human
gait is periodic, with the rotation pattern of each thigh during
a gait cycle being approximately sinusoidal in nature.

In [61], the wearable sensors of a BSN are attached at the
exterior side of the thigh. The hip angle, θ , is defined as
the angle between the thigh and gravity direction. The swing
velocity (angular velocity) of the thigh is v = dθ/dt . Kalman
filter is applied to estimate θ and v, which are key features
of the gait cycle. By fitting the sensed data to the model,
appropriate gait features and events can be found.

2) Semi-Physical Model: Another approach is to extract
events based on an existing physical model using pattern
recognition. Authors in [13] introduce a generic method for
temporal parameter extraction called the hidden Markov event
model based on HMMs. Their method constrains the state
structure to facilitate location of key events of gait.

3) Unsupervised Structural Model: The additive hierarchi-
cal representation of human movements is very similar to the
representation of human speech: raw sounds are divided into
phonemes, which are further grouped into words, which are
grouped into sentences [62]. Phonology exclusively focuses
on sound, ignoring physical movement of the tongue and
throat and cues from facial expressions. Similarly, raw sensor
data can be used to build sequences of motions, which can be
further grouped into actions and then activities. The purpose
of structural processing is to transform inertial sensor readings
into a sequence of temporal primitives, called movement
transcripts. This idea has been used by several authors [16],
[63], [64] and proved effective for many applications of
inertial sensors. The goal is to capture structural properties of
the signal by extracting statistical feature from individual data
points and grouping data points that are similar in the feature
space.

Fig. 6 shows a transcript of a synthetic one-dimensional
signal which illustrates correspondence between the primitives
and signal patterns (figure taken from [63]). In this figure, cor-
responding primitives are generated with a Gaussian Mixture
Model (GMM) clustering approach, labeled and colored. For
example, primitive ‘G’ corresponds to a portion of the signal
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Fig. 6. Example of motion transcripts generated for a 1-D synthetic
signal [63].

with a positive slope and ‘W’ represents a portion with positive
value of the second derivative.

Neurologists classify brain function and functionality based
on the structure and timing of electrical brain activity. This
is frequently recording using electroencephalography (EEG).
Researchers in [65] automated this analysis by performing
unsupervised spatio-temporal clustering of EEG signals which
were then put through a wavelet decomposition to form
templates. A supervised approach was used to select the most
relevant templates for the experiment. These templates could
then be used to classify the signal in real time.

D. Feature Selection

The problem of feature extraction is sometimes followed
by the feature selection problem: given a set of candidate
features, selecting a subset that performs the best under some
classification system. This procedure can reduce not only the
cost of recognition by reducing the number of features that
need to be collected, but in some cases it can also provide a
better classification accuracy due to finite sample size effects.
In the context of BSNs, feature selection implies less data
transmission and efficient data mining. It also brings potential
communication advantages in terms of packet collisions, data
rate, and storage.

In [66], feature selection was based on visual and statistical
analysis. The features were visually compared against anno-
tation to find good candidate features. Distribution bar graphs
of each feature signal during different activities were plotted
for comparison. A priori information was used in the quest for
the best features. As a result of the feature selection process,
at the end, only six features were selected for classification.

Most early studies for activity recognition are based on
empirical feature selection techniques [36], [67]–[69]. Recent
studies have adopted more systematic feature selection tech-
niques for enhancing the classification of activities.

Authors in [54] used wavelet coefficients to extract both
time and frequency properties of the acceleration signals.
Due to the fact that a large feature space was generated
from the digital wavelet transform, supervised feature selection
was used in order to select the useful features. In this work,
the Iterative Search Margin Based algorithm proposed by
Gilad-Bachrach et al. [70] was used. A margin is a geometric
measure for evaluating the confidence of a classifier when
making a decision.

Genetic algorithms (GAs) can be used for feature selection
and model parameterization. The algorithm in [13] introduces
a generalized method for event annotation in walking based
on HMMs. GAs start with a random population of solutions.
Over several generations, they crossover (mate) and mutate
the solutions, weeding out inferior solutions in a stochastic
manner. Each solution is represented by a vector of selected
features.

Authors in [55], present a hybrid approach to recognizing
activities, which combines boosting to discriminatively select
useful features and learn an ensemble of static classifiers to
recognize different activities, with HMMs.

BFFS (Bayesian Approach for Feature Selection) is a filter
based feature selection method developed at Imperial College.
In [71], the use of BFFS for optimum sensor location selection
is presented. In this work, general activities are recorded with
body-worn acceleration sensors. To evaluate the performance
of BFFS, a multi-layer Self-Organizing Map (SOM) [72] with
temporal information was employed as the classifier. In [73],
The BFFS was used to rank the relevance of features to
different human activity classes.

To reduce the time and energy required to calculate the
feature vector, several subsets of the complete feature space
were evaluated in [74]. The Correlation based Feature Selec-
tion (CFS) method was used to find feature sets containing
features that are highly correlated within the particular class
but are uncorrelated with each other.

V. CENTRALIZED DATA PROCESSING

While the data collected by the sensor nodes can be
processed in a distributed manner, most existing works focus
on developing algorithms for local processing of the data and
using a data fusion scheme at the base station for summarizing
state of the system. In fact, research on distributed and
collaborative signal processing in the area of body sensor
networks is in an early stage. In a local processing para-
digm, each sensor node performs partial processing on the
data and transmits the results to a base station. For action
recognition, for example, the base station is responsible for
combining data from all the nodes and building a centralized
classifier which identifies unknown actions. The accuracy of
such a classifier depends on a variety of parameters including
the classification algorithm, sensor node placement, types of
features that are extracted from the signal, and number and
type of actions/activities that are going to be recognized. For
example, in [75], authors report the results of a study on
activity recognition using different types of sensory devices,
including built-in wired sensors, RFID tags, and wireless
inertial sensors. The analysis performed on 104 hours of
data collected from more than 900 sensor inputs shows that
motion sensors outperform the other sensors on many of the
movements studied. A prototype called MEDIC, developed
in [76] for remote healthcare monitoring, uses a PDA as the
base station and several sensor nodes that collect and process
physiological data. They use a Naive Bayes [77] classifier that
provides more than 90% accuracy. A wireless body sensor
system for monitoring human activities and location in indoor
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TABLE I

WORKS ON ACTION RECOGNITION

Ref. Classifier No. Nodes No. Actions Accuracy Node Location

[82] kNN 6 7 91% Shoulder, Chest, Waist, Back, Wrist, Ankle

[83] kNN 1 4 84% Chest

[81] kNN 8 25 97% Waist, L-wrist, R-wrist, L-arm, R-thigh, L-thigh, R-ankle, L-ankle

[81] kNN 5 25 96% L-wrist, R-wrist, L-thigh, R-ankle, L-ankle

[81] kNN 2 25 92% Active nodes are detected dynamically

[74] kNN 1 4 85% Pocket

[74] kNN 1 4 86% Necklace

[74] kNN 1 4 87% Belt

[74] kNN 1 4 87% Wrist

[74] kNN 1 4 89% Shirt

[74] kNN 1 4 92% Bag

[84] HMM 19 10 98% R-arm (10 nodes), L-arm (9 nodes)

[84] HMM 3 10 97% R-forearm, L-forearm, L-arm

[84] HMM 1 10 80% Active nodes are detected dynamically

[79] HMM 3 8 90% Shoulder, Waist, Wrist

[85] HMM 3 19 92% Waist, Wrist, Thigh

[86] HMM 8 25 93% L-wrist, R-wrist, L-arm, R-arm, R-thigh, L-thigh, R-ankle, L-ankle

[87] SVM 6 6 95% Shoe (1 accelerometer. & 5 pressure sensors)

[88] SVM 2 9 79%-97% Hip (accelerometer), Chest (2 ECG electrods)

[89] SVM 1 8 84 Waist (mobile-phone)

environments is introduced in [78] where each sensor node
is equipped with accelerometer, gyroscope and magnetometer.
Authors in [36] use a network of five accelerometers to classify
a sequence of daily activities. They report a classification
accuracy of 84% for detecting twenty actions. The system
in [79] uses seven different sensors embedded in a single
node to classify twelve movements. The accuracy obtained
by this system is 90%. Furthermore, the accuracy reported by
the centralized k-NN classifiers in [80], [81] is more than 90%
for classification of different human actions.

A. Activity Information Extraction

While many algorithms including k-Nearest Neighbor
(k-NN) [74], [81]–[83], Hidden Markov Models (HMM) [79],
[84]–[86], Naive Bayes [76], [90], Support Vector Machines
[87], [88] and others [68], [91] have been investigated, the
k-NN and HMM are more common in action recognition in
wireless healthcare domain when motion sensors are used as
primary means for information inference. Table I shows a sum-
mary of most recent works on action/activity recognition from
wearable sensors. The k-NN algorithm classifies an unknown
action based on its distance to closest action in the feature
space. The distance measure is determined according to the
type of features. Most common measures include Euclidean
distance, used for numerical features [12], and edit distance,
used for alphabetical attributes [63]. Advantages of the k-NN
include simplicity and scalability [81] which makes it feasible
for practical uses of wearable healthcare platforms.

Frame-based classifiers such as the k-NN classify each
segment independently. HMM-based classifiers are attractive
because they can take advantage of temporal properties of
the observed data. For instance, a person may not sit down

twice in a row because the action of sitting down must start
from the standing position. Also, an individual may be more
likely to go from running to walking than from running to
sitting down, despite the fact that both are possible. HMM-
based classifiers can represent these situations by inducing
a statistical model for detecting the most probable sequence
of events occurring during system operation. Hidden Markov
Models consider a system that can be modeled with a set
of discrete states. The system is always in exactly one state.
The output of the system (sensor data) is probabilistically
based solely on the present state. At each cycle, the system
produces an output and a state transition occurs. In health
systems, actions could be represented by individual states, by
sequences of states, or by the transition between states [92]. As
an example, postures, such as “sitting,” “standing,” and “lying
down” produce fairly consistent and static data, and thus can
be represented by individual states [37]. A complicated action
such as swinging a tennis racket might be modeled using
a sequence of states [86], [93]. Finally, transitional actions,
such as sit-to-stand may either be modeled with a sequence of
states starting and ending on the appropriate postures, or even
exclusively using the starting and ending postures [86].

More recently, researchers have started integrating other
sensor modality with accelerometers and gyroscopes to infer
activities and postures. [87] and [88] use pressure sensors and
ECG sensors respectively, in addition to the motion sensors,
to perform activity recognition and posture identification.

B. ECG Information Extraction

Beat classification corresponds to the process of determin-
ing whether the detected ECG beat is of normal origin or
if it displays some abnormality, such premature ventricular
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TABLE II

COMPARISON OF ECG CLASSIFICATION TECHNIQUES

Reference Feature Classifier Accuracy Beat Types1

[98] Statistics over Wavelet features Probabilistic Neural Network 99.65% N, V, L, R, A, P

[97] Hermite-basis function projections Self Organizing Map 98.5% All

[99] Standard Morphological Decision Trees 96.13% All

[100] Raw Data Samples Multi Layer Perceptron 98.07% N, R, V, P, F

[101] Custom Morphological and Matching Pursuits Kth Nearest Neighbor 98.44% N, V, L, R, P

[102] Higher-order statistics Fuzzy Hybrid Neural Network 96.06% N, V, L, R, A, I, E

[96] Standard and Custom Morphological Linear Discriminants 86.2% All

[103] Matching Pursuit based Multi Layer Perceptron 98.7% N, V, L, R, P

[104] ECG Clinical Features Layered HMM 99.2% N,V
1N = Normal Beat. V = Premature Ventricular Contraction. L = Left Bundle Branch Block. R = Right Bundle Branch Block.

A = Atrial Premature Contraction. P = Paced Beat. I = Ventricular Flutter Wave. E = Ventricular Escape Beat. F = Fusion of
Paced and Normal Beat.

contraction or ectopic systole. As arrhythmic patterns tend
to appear infrequently, long-term 24-hour ECF recordings are
often used to detect the occurrence of arrhythmic patterns,
which can be of high clinical importance. Manual analysis of
such ECG records is a tedious task, thus automatic interpre-
tation is particularly significant.

Computer-based analysis and ECG classification has been
widely addressed by the biomedical research community dur-
ing at least the last three decades [94]–[96]. As a result, nowa-
days there is an abundance of ECG classification algorithms in
the literature. However, not all of these methods are applicable
in the context of wearable health monitoring systems.

ECG classification requires the generation and the selec-
tion of appropriate features that can represent efficiently and
compactly the ECG beat classes of interest. As discussed in
the previous section these features can be extracted a) in the
time domain, b) in the frequency domain or c) the can be a
representation or projection of the beats in a different domain.
Examples of type a) features include wave and segment widths
(usually denoted as ECG clinical features) and heights which
can be extracted via any of the available ECG delineation
techniques that were introduced in section IV.A. Additional
time-domain features include QRS slopes, QRS area, RR
interval statistics, vectorcardiographic features or even raw
time-domain samples. Frequency domain features include
information about the distribution of the Fourier spectrum of a
specific beat. Finally a variety of alternative features have been
investigated by different research groups. Examples of such
features include wavelet statistics, linguistic representation of
ECG segments and projections onto Hermite basis functions.
These features are then utilized to train some type of classifier,
usually supervised as there is by now a wide range of
annotated ECG signals [97]. Classification methods include:
linear discriminants, support vector machines, nearest neighbor
classifiers, Hidden Markov Models and neural networks such
as multi-layer perceptrons and self-organizing maps.

Table II gives an overview of several ECG classification
approaches (this of course being far from an exhaustive list
of the various approaches to ECG classification but it is still
fairly representative of the different methods that have been to
this problem), listing the employed features, the classification

method, the sensitivity/accuracy of each approach, the beat
types that were recognized from the system and finally whether
the system was trained and tested using the entire MIT-BIH
Arrhythmia database or just a fraction of it. It should be noted
however that different research groups tend to use different
sets of training and test data which vary in size and relative
distribution. Also some authors choose to classify beats based
on their MIT-BIH Arrhythmia database label while others
employ the grouping of beats suggested by the Association for
the Advancement of Medical Instrumentation (AAMI) [105].

The ECG classification approaches, which are listed in
Table II, are not all suitable for resource constrained embedded
wearable systems. Only the methods described in [97], [100]
and [103] hold the promise for real-time operation, since
they either utilize raw data samples as inputs to the classifier
as in [100] where real-time operation on a smart-phone is
demonstrated or they simply require projections on selected
basis functions [97], [103].

The authors in [106] and [107] illustrate two different
patient-adaptive ECG beat classification schemes which utilize
both a global and a local classifier, whereby the first one
is trained on a variety of ECG beats taken from several
patients while the second one utilizes patient-specific beat
classification results to enhance the accuracy of the system per
individual. Llamendo et al [108], [109] recently investigated
efficient feature selection strategies for ECG beat classification
using the AAMI recommendations. By means of a sequential
forward floating search algorithm they were able to identify
a subset of temporal, morphological and statistical features
that can greatly enhance the classification accuracy of a MLP
classification model compared to previous works.

The final step in ECG analysis is rhythm classification.
In normal ECG rhythms the electrical impulse originates in the
sinoatrial node (SA), the heart’s natural pacemaker. Abnormal
heart rhythms are manifested when the impulses begin in a
fast and irregular manner, and from various regions of the heart
like the atria or the ventricles. Amongst these arrhythmias it is
important to be able to differentiate between life-threatening
ones (like Ventricular Flutter or Fibrillation) and other less
risky arrhythmias (like Sinus Tachycardia). To accomplish this
task, a series of consecutive ECG beats need to be examined in
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order to identify abnormal heart rhythms. Rodriguez et al [99]
presented an accurate method for rhythm classification based
on standard cardiologic rules and previous beat classifications.
The resulting decision tree approach was able to identify
abnormalities in heart rhythm with very high accuracy while
also being able to run in real-time on a resource constrained
device such as a personal digital assistant (PDA).

VI. DISTRIBUTED DATA PROCESSING

The algorithms reviewed in Section V use a centralized
architecture for making a decision. In the context of action
recognition, when an unknown action occurs, all sensor nodes
transmit their local results (e.g. extracted features) to a central
node for the purpose of global classification. In contrast, in a
distributed scenario, each node makes a local decision on the
target action and may decide to propagate its local results to
a next node. The amount of data transmitted over the network
can be reduced to only a subset of the nodes that contribute
to the classification of the movement. A distributed algorithm
for action recognition needs a smaller number of the nodes
to make a decision while maintains classification accuracy
comparable to the centralized architecture [63]. Distributed
processing offers better energy efficiency than centralized
processing. Communication generally consumes more energy
than local computation [110], [111]. From the energy preser-
vation point it is a more beneficial to signal processing on
individual nodes.

Several authors have investigated collaborative models for
signal processing. Mostly, these algorithms have two major
objectives: 1) to minimize number of active nodes that are
involved in recognition of each action 2) to reduce amount of
data that are exchanged among active nodes. These objectives
can result in power-aware action recognition techniques that
minimize the number of active nodes while the amount of
communicated data is reduced. Two approaches on collabora-
tive action recognition include pseudo-dynamic node selection
and dynamic node selection. These optimization algorithms are
centered around the concept of node selection. Node selection
aims to select minimum number of nodes for classification.
Pseudo-dynamic node selection introduced in [80] uses spatial
primitives of the movements to construct a decision tree for
classification. While a subset of the nodes is used to build
the decision tree, classification takes different paths on the
tree for detecting different actions. In dynamic node selection
presented in [63], [112], active nodes are detected in real-time
based on observations made by individual sensor nodes. This
distributed classification model uses movement transcripts to
reduce the amount of data that are being transmitted among the
nodes. A more heuristic approach to dynamic node selection
is presented in [113].

VII. OPEN CHALLENGING ISSUES

There are many other challenges in the development of
wireless medical embedded systems. These include the devel-
opment of application-specific features to increase robustness
and fault-tolerance; compression and security at the data level
to secure communication and lower energy costs; energy

reduction through communication optimization; and back-end
data analytics. Finally, there are several challenges that apply
to the community, such as developing publicly available test
datasets for verifying claims and comparing algorithms and
the need for a development platform aimed at the needs of the
wireless health community.

A. Application-Specific Features

Initial work in wireless health relied on simple statistical
features due to ease of calculation. However, more recently,
other approaches have been used. A comparison of several
feature types is presented in [114]. Moving forward, it will
be important to develop features specific to particular applica-
tions or processing capacity [115]. By making features more
relevant, a smaller number of features can be used for accurate
pattern recognition. This will reduce computation and decrease
the amount of training data required.

An example of the importance of application-specific fea-
tures is sensor misplacement. For motion monitoring, sensor
misplacement is an ever-present problem. Sensors may be
placed on the wrong limbs, or at the right limbs but an
incorrect position, or even upside down. This is inevitable in
deployment, therefore algorithms will need to account for this.
One approach is to find signals/features that are insensitive
to node misplacement, and use them for classification [116].
Another technique builds a statistical model of misplacement,
which approximates errors based on experimental data [117].
In other work, genetic programming is used to extract and
compose features robust to sensor misplacement [51].

B. Compression and Security

At the data and communication level, compression and
security will both play very large roles in any commercial
deployment. Compression reduces transmission bandwidth,
and thus conserves energy. Encryption and authentication
protocols can prevent snooping and data injection.

Compression can be lossless or lossy, and application-aware
or application-agnostic. In one system, researchers developed
a lossless compression co-processor which uses very little
energy compared to the processor [118]. Lossy compression
can be applied to signals with known characteristics without
sacrificing important information. For example, compression
on ECG signals using wavelets [119].

As wireless health platforms become more attractive for
medical applications, it will become necessary to develop
communication protocols that are robust to interference and
secure from snooping and data injection. The biggest challenge
for encryption is that attackers potentially have access to
laptop-level processing power, while the encryption tasks must
share the already constrained on-node processor with the
signal-processing tasks. Tan, et al propose a system based on
public key cryptography. New keys are generated in advance
covering small segments of time to grant access to specific
individuals only for small periods of time [120]. It is also
possible to generate a key using biometric data sensed from
the body to contribute to the generation [121]–[123].
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C. Datasets

One considerable impediment to signal processing and pat-
tern recognition design on wireless health is the lack of good
publicly available and standardized datasets. Without such
datasets it is difficult to compare the accuracy of recognition
algorithms. The imaging processing community has a standard
set of images for comparing processing techniques [124], the
ECG analysis community has several large databases of ECG
data, and the BCI community has a set of brain recordings. As
of yet, there is no standard in this community, which makes
it harder to verify claims and compare algorithms. Correcting
this problem should be a priority of the community.

D. Development Platform

Another necessary component is a platform for develop-
ment, training, and simulation. There are several platforms
available for Wireless Sensor Networks, such as TinyOS [125].
However, Body Sensor Networks have specific needs and
constraints. For instance, most body sensor networks are
deployed in a star topology with a powerful base station node.
Further, there is a really high emphasis on pattern recognition.
A typical design and training is to set recognition goals, pick
sensor locations and capabilities, build the software, and train
the signal processing.

One platform that addresses the specific needs of wearable
monitoring systems is Signal Processing in Node Environment
(SPINE) [126]. It is a lightweight API built on top of TinyOS
on the sensor node side and Java on the base station side. It
provides support for sensor discovery, radio protocol selection,
and basic signal processing. It is extensible through custom
programming [127], [128].

The Health Integration Platform (HIP) is another platform
aimed at this area written in Java [129]. HIP has a more
flexible architecture and supports modular analysis, as well as
supporting more mote operating systems and types. However,
it appears to be aimed more at data collection scenarios rather
than pattern recognition, and at this time offers no support for
design-side activities such as training and automated sensor
placement.

VIII. CONCLUSION

As we move further into the 21st century, affordability of
healthcare is becoming a bigger and bigger issue. As with
other fields, greater automation is the key to reducing costs.
Wireless medical embedded systems offer this automation
through ubiquitous patient monitoring and automated data
analysis and event sensing. As many medical applications
rely heavily on pattern recognition and signal processing, the
development of lightweight and distributed signal processing
has been crucial to this field. In this paper, we presented a
pipeline model which encompasses many of these algorithms
and techniques in literature.

Moving forward, developments in signal processing will
continue to be critical to the success of body sensor networks.
As with many signal processing fields, we believe that the
development of application specific features is critical, while
the recognition algorithms themselves will be generic and

applicable across a wide range of applications. Furthermore,
tools and frameworks are required to build applications across
heterogeneous sensor systems and at various levels of com-
putation. The tools will need to be able to train pattern
recognition tools from available test data, potentially convert
existing training data to match new sensors, and handle node
placement. Moreover, once different components of the system
are designed (including signal processing modules), an opti-
mization of the entire system is required to ensure feasibility
of hardware, software, and signal processing blocks for real-
world deployment. Optimization can be done within each and
every component of the system; however, there would be
tradeoffs for choosing optimum configuration. This is mainly
due to the fact that the components are interoperable and do
not function independent of each other. For example, while a
per-node data reduction can reduce the amount of data that is
being transmitted across the networks, it may cause reduction
in the recognition accuracy of the system.
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