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A B S T R A C T

Background

The influence of air travel on influenza spread has been the subject of numerous
investigations using simulation, but very little empirical evidence has been provided.
Understanding the role of airline travel in large-scale influenza spread is especially important
given the mounting threat of an influenza pandemic. Several recent simulation studies have
concluded that air travel restrictions may not have a significant impact on the course of a
pandemic. Here, we assess, with empirical data, the role of airline volume on the yearly inter-
regional spread of influenza in the United States.

Methods and Findings

We measured rate of inter-regional spread and timing of influenza in the United States for
nine seasons, from 1996 to 2005 using weekly influenza and pneumonia mortality from the
Centers for Disease Control and Prevention. Seasonality was characterized by band-pass
filtering. We found that domestic airline travel volume in November (mostly surrounding the
Thanksgiving holiday) predicts the rate of influenza spread (r2¼ 0.60; p¼ 0.014). We also found
that international airline travel influences the timing of influenza mortality (r2¼0.59; p¼ 0.016).
The flight ban in the US after the terrorist attack on September 11, 2001, and the subsequent
depression of the air travel market, provided a natural experiment for the evaluation of flight
restrictions; the decrease in air travel was associated with a delayed and prolonged influenza
season.

Conclusions

We provide the first empirical evidence for the role of airline travel in long-range
dissemination of influenza. Our results suggest an important influence of international air travel
on the timing of influenza introduction, as well as an influence of domestic air travel on the rate
of inter-regional influenza spread in the US. Pandemic preparedness strategies should account
for a possible benefit of airline travel restrictions on influenza spread.

The Editors’ Summary of this article follows the references.
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Introduction

The influence of air travel on the geographic spread of
influenza has been the subject of a number of simulation
studies [1–4]. Discrete time SEIR (susceptible–exposed–
infectious–recovered) models coupled with air transportation
data have been used to explain the global path of influenza
epidemics [3] and pandemics [5]. However, there is surpris-
ingly little empirical information on how airline travel
influences the spread of influenza through regions, nations,
and across the globe. Although recent work suggests high
geographical coincidence of time series of influenza mortality
at the hemispheric [6] and national scale [7–10], little is
known about how epidemics may be connected across large
areas. Analyzing spatial–temporal patterns of influenza
epidemics represents a critical step toward understanding
how population movement contributes to epidemic fluctua-
tions, and will help inform the evaluation of targeted control
strategies.

A recent study examined the between-state progression of
inter-pandemic influenza in the United States and found a
strong relationship with movement of individuals to and from
their workplace [10]. Although this local travel may be largely
responsible for spread within a region (for example, a state,

where travel is dominated by personal vehicular movement),
inter-regional influenza spread may be more significantly
influenced by long-range airline travel, which comprises
almost half of all movement at distances greater than 1,000
miles and the majority of travel at over 2,000 miles [11].
Understanding the role of airline travel in large-scale
influenza spread is especially important given the mounting
threat of an influenza pandemic [12–14]. The decision of
whether travel restrictions should be put into place when a
pandemic strain emerges beyond the source is currently
under consideration by the World Health Organization [15].
In this study, we characterize the spatial variability in the

inter-regional timing of the seasonal component of influenza
mortality across the United States and assess its relationship
to airline volume. Influenza epidemics peak each year during
the winter in the Northern and Southern Hemisphere; thus,
epidemics at a particular geographic location typically
display strong seasonal cycles (Figure 1). Here, we apply
signal processing methods to disease surveillance data to
resolve spatial–temporal patterns in the seasonal cycle of
inter-regional influenza spread across the US. Based on these
patterns, we examine how international and domestic airline
travel may influence both the introduction of new viral
strains and their spread.

Figure 1. Filtering of Weekly P&I Mortality in the United States (1996–2005)

(A) The black line represents the aggregated national data of P&I weekly mortality. The blue line represents the seasonal influenza curve, derived by
band-pass filtering the demeaned data (two-pole, two-pass Butterworth, 1/64–1/40 frequency range). For comparison with the raw data, the mean is
added after filtering. The filtered time series plus mean accounts for 99.8% of the mortality, indicating that most deaths are from the mean and seasonal
variation and not the high-frequency cycles.
(B) Lines represent the raw time series data for each of the nine geographic regions of the US.
(C) Lines represent the seasonal influenza curves for each of the nine geographic regions of the US, derived by band-pass filtering.
DOI: 10.1371/journal.pmed.0030401.g001
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Methods

Spatial–Temporal Patterns of Influenza Mortality
Data on weekly mortality from pneumonia and influenza

(P&I) were obtained from the Centers for Disease Control
and Prevention 121 Cities Mortality Reporting System (http://
www.cdc.gov/EPO/DPHSI/121hist.htm) for nine influenza sea-
sons, from 1996–1997 to 2004–2005, representing 396,506
deaths [16]. Because the strength of the seasonal cycle is weak
for cities with small case counts and because some city data
contain missing data points, we stacked the raw city-level data
to obtain composite waveforms for each of the nine major
geographic regions of the United States, as defined by the
Centers for Disease Control and Prevention (Figure 2). If the
noise in the city data is random, such stacking should improve
the observation of any coherent regional signal.

For each region, we characterized the seasonality of P&I
mortality by filtering. We use band-pass filtering to focus on
the seasonality of influenza mortality (Box 1). Specifically, to
isolate the seasonal (annual) cycles of influenza mortality we
band-pass filtered each of the regional time series using a
two-pole, two-pass (zero phase) Butterworth filter with low
and high cutoff periods of 40 and 62 wk. Prior to filtering,
time series were demeaned, and tapered at the ends to zero to
reduce edge effects.

For each influenza year, coincidence in the timing of
seasonal influenza mortality across geographic regions was
estimated from the phase shift with a national seasonal curve,
derived by summing of all city data and filtering. We used
spline resampling to achieve daily resolution. We divided the
filtered data into subsets by influenza year (week 40 of one
year to week 39 of the following year). We then performed
cross-correlation with the national time series for each
possible comparison (nine regions times 9 y) to estimate
phase shifts (lag or lead times), considering a shift range of
620 wk. The phase shift with the maximum cross-correlation

served as an estimate of the relative timing of the seasonal
influenza curve in a given region and a given year. We also
estimated the peak date of the seasonal national curve for
each year. For each year, the time required for an influenza
wave to spread across the US was estimated by the variability
in the seasonal phase shifts for the nine regions. We used the
variation in the phase shifts from the national curve for each
year as estimated by the 99% confidence interval to
approximate the time to transnational spread.

Effect of Airline Volume on Inter-Regional Influenza

Spread and Peak
We modeled changes in the rate of inter-regional spread of

seasonal influenza mortality as a response to yearly fluctua-
tions in domestic airline volume. Monthly estimates of

Figure 2. Major Geographic Regions of the United States

The sentinel cities that report mortality due to P&I used in the Centers for Disease Control and Prevention 122 Cities Mortality Reporting System are
displayed (black dots). Because the strength of the seasonal influenza cycle is weak for cities with small case counts and because some city data contain
missing data points, we aggregated the raw city-level data to obtain composite waveforms by major geographic region, the aerial unit of analysis for
this study.
DOI: 10.1371/journal.pmed.0030401.g002

Box 1. Time series analysis is a well known method for
revealing time-dependent phenomena that are not necessarily
apparent in raw data. Because of the strong seasonality of
influenza mortality, we used band-pass filtering to isolate the
patterns around the yearly (seasonal) signal of influenza. Such
filtering essentially smoothes over and removes variations at
short time scales (such as daily changes) and long time scales
(such as biennial) to isolate the coherent seasonal patterns
(Figure 1). Essentially, we extract a range of seasonal frequencies
of interest from the time series while rejecting (attenuating)
frequencies outside that range. Our filtering approach reflects
the fact that, from a time series perspective, the seasonality of
influenza mortality is nearly stationary for these data in that the
peaking always occurs at similar times in the winter months. This
is in contrast to other infectious diseases such as measles and
dengue, where strong non-stationary signals are observed and
more sophisticated analysis methods, such as wavelets and
empirical mode decomposition, are appropriate.

PLoS Medicine | www.plosmedicine.org October 2006 | Volume 3 | Issue 10 | e4011828

Air Travel and Regional Influenza Spread



passengers on domestic flights were obtained for November
to January of each influenza season [17]. This range was
selected because influenza activity begins to increase in
November [18], and viral isolate collections by the World
Health Organization and National Respiratory and Enteric
Virus Surveillance System (WHO/NREVSS) collaborating
laboratories show that all regions have influenza activity as
of January each year.

We also investigated the effect of international airline
travel on the absolute timing of the seasonal peak of national
influenza mortality. Monthly estimates of passengers on
international flights were obtained for September to No-
vember of each influenza season [17]. We selected this range
as the most likely time window in which new viral strains
would be introduced each influenza season. We used the peak
date from the filtered national curve as the indicator of the
absolute timing of influenza mortality for a given year.

We fit stepwise regression models to both time to transna-
tional spread and peak timing using domestic and interna-
tional airline travel volume, respectively. A normal response
distribution was used in both cases after analysis of the
residuals and statistical tests of normality, including the
Kolmogorov-Smirnov and Shapiro-Wilk tests. For each
model, we evaluated covariates in a stepwise fashion. Our
model for inter-regional influenza spread included overall
domestic airline volume for October, November, and
December as separate covariates. Our model for influenza
peak included overall international airline volume for
September, October, and November as separate covariates.
In each case, we included a linear trend term to account for
the potential effect of improved city reporting over time. We
also assessed significance after applying a Bonferroni correc-
tion to adjust for the effect of testing across multiple months.

In order to investigate other possible contributing factors,
we also included the effect of winter severity and dominant
strain in our stepwise regression model [19]. First, we
collected climate data to account for the effect of winter
temperature. Past studies have shown that colder conditions
promote human indoor crowding and thus increased virus
transmission and possibly a faster course of virus spread
[20,21]. We obtained data from the National Climatic Data
Center on national average winter temperature (December–
February) and included this as a term in our model [22]. In
addition, we examined the effects of the temperature of
individual winter months as covariates. We also calculated the
minimum mean temperature for a winter period and
examined its effect on inter-regional influenza spread and
peak. In any given season, a number of strains of varying
virulence and spatial distribution can be circulating. Previous
research has shown that the dominant circulating subtype is
associated with the impact and rate of spread of influenza
epidemics [7,10,19]. Thus, strain variation could have an
effect on our measures. In order to account for this factor, we
included the dominant subtype (A/H3N2 or A/H1N1) as a
categorical variable in our model. Finally, previous work has
shown that, at the state level, time to transnational spread is
influenced by the first state to be affected [10]. Therefore, to
account for this potential confounding, we also included the
first region with activity identified with the phase shift
analysis as a covariate in the model. Model fitting was
performed in SAS version 9.0 for Windows (SAS Institute,
Cary, North Carolina, United States).

Model Validation
The P&I mortality data have limitations, including spatial

and temporal variation in voluntary reporting and uncertainty
about the proportion of deaths attributable to epidemic
influenza. Therefore, we validatedmortality patterns with viral
surveillance data from the WHO/NREVSS collaborating
laboratories from 1997–2005. These viral data provide time
series of the percentage of positive influenza specimens for an
influenza season (from week 40 of one year to week 20 of the
following year).High-quality datawere available at thenational
scale for the eight influenza seasons from 1997–1998 to 2004–
2005, andat the regional scale for the six influenza seasons from
1999–2000 to 2004–2005. For each season, we calculated the
national peak dates of viral activity. Additionally, we calculated
the yearly time to transnational spread based on peak week of
regional viral activity available from 1999–2005.
In order to establish the causal link between flight

reductions in the US after the terrorist attack on September
11, 2001, and a delayed epidemic peak, we examined whether
a similar delay occurred in Europe, where flight restrictions
were not imposed. We obtained weekly influenza-like illness
data for France from 1996–2005 from the French Sentinel
Network. This voluntary surveillance system, active since
1984, collects reports from general practitioners across
France [23]. We estimated the peak week of yearly influenza
epidemics by two methods. First, we estimate peak week by
the raw time series and taking the week of highest incidence.
Second, we applied our filtering approach described above to
estimate peak influenza activity from the smoothed time
series. This smoothing could potentially provide a more
robust estimate of peak date.

Results

Spatial–Temporal Patterns of Influenza Mortality
Our filtering approach reflects the fact that the seasonality

is nearly stationary. Spectral analyses of national influenza
mortality data confirm that the yearly (;52 wk) Fourier
component is the dominant period and that a seasonal time
series plus mean can explain 99.8% of the national mortality.
Our analyses do not examine the high-frequency epidemic
peaks, which were found to be extremely noisy and poorly
defined for many influenza seasons (for example, the 2000–
2001 and 2002–2003 seasons) and may be more influenced by
imperfect reporting (Figure 1B). In contrast, the peaks in the
seasonal curves are coherent and well-behaved across the
nine regions, and therefore should be reliable proxies of peak
influenza mortality (Figure 1C).
Although the sequence of infection varied among regions

from year to year, certain spatial–temporal patterns emerged
in the seasonal component of P&I mortality (Figure 3). The
yearly component of influenza takes approximately 2 wk on
average to peak over all US regions. The time to transnational
spread decreased from 24–26 d during the 1996–1997 and
1997–1998 influenza seasons to 8–11 d during 1999–2000 and
2000–2001 seasons. The 2001–2002 influenza season (follow-
ing September 11, 2001) manifested an increase, with a time
to transnational spread of 16 d, 68% longer than for the
previous two seasons. In the subsequent influenza seasons,
there was only a slight decrease in rate of inter-regional
spread, to an average of 15 d, and there was not a return to
the rate of before September 11, 2001.
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We found a significant effect of influenza season on the
phasing of the overall national curve (analysis of variance,
f(1,8)¼3.931; p¼0.001). We found that the national peak date
for seasonal influenza mortality was stable for five of the nine
seasons, occurring within 2 d of February 17. The influenza
season following September 11, 2001, had a markedly delayed
peak, on March 2, 2002, 13 d later than average. The
subsequent influenza seasons, 2002–2003, 2003–2004, and

2004–2005 progressively returned to baseline, with peaks on
February 29, 19, and 17, respectively.

Effect of Airline Volume on Influenza Inter-Regional
Spread and Peak
We found that changes in the rate of spread and timing of

seasonal influenza mortality were correlated with yearly
fluctuations in monthly airline volume (Figure 4A and 4B).

Figure 3. Timing of Influenza Illness across the Nine Major Geographic Regions of the United States (1996–2005)

For each influenza year, phase shifts are calculated as the maximum value from cross-correlation of the band-pass filtered weekly P&I mortality data.
(A) Contour plot of raw phase shifts between regions for each season, which displays shifts in the absolute timing of influenza mortality peaks from year
to year. The plot shows the shifts in the yearly phase, with the 1999–2000 season exhibiting an overall earlier peak and the 2001–2002 season (following
September 11, 2001) exhibiting an overall later peak across all regions.
(B) Contour plot of demeaned phase shifts, which displays typical regional patterns and relative time to transnational spread. For each season,
demeaned phase shifts were calculated by subtracting the mean peak date. The plot reveals increased variation in phase shifts (time to transnational
spread) during the earliest influenza seasons, 1996–1997 and 1997–1998, as well as the increased variation during the 2001–2002 influenza season.
DOI: 10.1371/journal.pmed.0030401.g003
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An inverse correlation was found between time to transna-
tional spread of influenza and the number of traveling
domestic passengers during the November to January period
(Pearson correlation, R ¼�0.69; p ¼ 0.021). Though each of
the three months reveal an inverse relationship, we found
that domestic airline volume in November was the single
significant predictor of influenza spread (r2¼ 0.60; p¼ 0.014)
(Figure 4). This relationship was especially evident for the
1997–1998 season, in which there was both the lowest airline
volume (39 million passengers) and the slowest spread (26 d).

A strong inverse correlation was found between the timing
of an influenza season and the numbers of traveling interna-
tional passengers between September and November (Pear-
son correlation, R ¼�0.66; p ¼ 0.027) (Figure 4). In this case,
although all three months showed an inverse relationship,
international travel in September was the single month to
significantly predict the seasonal national peak (r2¼ 0.59; p¼
0.016). This is especially evident during 2001–2002, when

international flight volume decreased by 27%, from 4.9
million international passengers to 3.5 million, and peak
influenza mortality was delayed by 2 wk. Furthermore, we also
found a delayed peak during the 2002–2003 season, when
international airline travel was down by 10% because of the
residual effect of the events of September 11, 2001, on travel
behavior. A continued trend back to baseline peak was found
during the 2003–2004 and 2004–2005 seasons as international
airline activity resumed its levels of before September 11,
2001. Relationships for both influenza spread and peak were
still significant after application of the Bonferroni correction
to account for multiple testing of individual months (alpha¼
0.017).
We did not find a significant relationship between climate

and inter-regional influenza spread. Although we did find a
2001–2002 warm temperature spike and a positive relation-
ship between hot temperatures and late peaking, this
relationship was not significant and dropped out of the

Figure 4. Influence of United States Airline Volume on Influenza Spread and the Timing of Yearly Transmission

(A) November domestic air travel volume (red line) is estimated by the total number of passengers on domestic flights. Duration to transnational spread
of influenza (blue line) is estimated as the 99% confidence intervals for differences between the estimated seasonal curves of influenza mortality for
each of nine major geographic regions of the United States.
(B) The association between domestic airline travel in November and transnational spread is displayed. The numbers of traveling domestic passengers
in November significantly predicts transnational influenza spread (f ¼ 10.6; r 2 ¼ 0.60; slope¼�0.94 days/million passengers; p ¼ 0.014).
(C) September international air travel volume (red line) is estimated by the total number of passengers on international flights. The timing of seasonal
national influenza mortality (blue line) is estimated as the peak date of influenza mortality from the filtered national curve. The timing displayed is
relative to the average date of February 17.
(D) The association between international airline travel in September and the timing of the US influenza peak is displayed. The numbers of traveling
international passengers in September significantly predicts the timing of seasonal influenza mortality (f¼ 10.0; r 2¼ 0.59; slope¼�11.3 days/million
passengers; p ¼ 0.016).
DOI: 10.1371/journal.pmed.0030401.g004
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stepwise regression model. Indeed, as the 2001–2002 season
contained the second warmest November–February period
on record, environmental conditions may have contributed
to the late national peaking of influenza in that season.
However, the 1999–2000 season was the warmest November–
February period since 1895 and yet had an earlier than
average national influenza peak. We also considered winter
months separately, as well as overall minimum mean winter
temperature, but none were significant predictors. In
addition, strain type did not account for any significant
amount of the variability in transnational spread or peak
time of influenza mortality. Finally, first region affected was
also not a significant explanatory variable (see Protocol S1).

Model Validation
Viral data from the WHO/NREVSS collaborating laborato-

ries were used to validate seasonal patterns obtained from the
filtered mortality data. We found that peaks in the seasonal
mortality data occurred about a month after those in the viral
data (mean delay¼ 30.8 d; 95% confidence interval: 9.1–52.4
d). The estimated spread and peak of the filtered mortality
and viral data were well correlated, with Spearman rank
correlations of 0.928 (p ¼ 0.004) and 0.695 (p ¼ 0.028),
respectively. Our validation with the viral data indicates that
although the absolute scaling between influenza activity and
seasonal mortality differs, the relative ordering of peak dates
and time to transnational spread between these two datasets
is consistent. Furthermore, analysis of the viral surveillance
data confirms the effect of September 11, 2001. We found a
significantly longer time to transnational spread and a
delayed peak date for the 2001–2002 season. The time to
transnational spread was 53 d, 60% longer than the average
of 33 d, which is a statistically significant difference (p ,

0.001). The national viral peak date for the 2001–2002 season
was calculated at February 23, significantly later than the
average of January 20 across the other seasons (p ¼ 0.012).

Unlike in the United States, we did not see a similarly
delayed peak of influenza activity during the 2001–2002
season in France, where flight restrictions were not imposed.
For estimation based on both the raw and filtered time series,
the defined peak during this season was estimated at the
fourth week in January, 2002. This peak week was not
significantly different than that of the eight other influenza
seasons (for the raw time series, mean peak was the fourth
week; 95% confidence interval: 0–9 wk; for the filtered time
series, mean peak was the third week; 95% confidence
interval: 1–5 wk). This result provides further evidence that
the delayed 2001–2002 US influenza mortality peak was
linked to the flight restrictions following the events of
September 11, and the subsequent depressed air travel
market.

Discussion

This study is an empirical analysis of the spatial–temporal
pattern of inter-regional influenza spread across the United
States and provides evidence for factors that influence it.
Whereas previous simulation models have suggested that air
travel may play an important role in the spread of annual
influenza [1,3], we provide what is to our knowledge the first
empirical evidence to confirm the effect airline volume on
long-range spread. Our findings suggest that once intro-

duced, new viral strains are likely to spread rapidly across
geographic regions. Furthermore, though between-state
movement may be driven primarily by workflows [10], our
results suggest that inter-regional spread occurs by a different
mechanism, where air travel may be an important mode of
long-range dissemination of influenza. We find that the effect
of airline volume on regional influenza spread is largely based
on travel in November. Though influenza activity is highest
between January and March, initial regional seeding of
infection may occur earlier. Our results suggest that for a
non-pandemic year, travel during the Thanksgiving holiday
may be central to the yearly national spread of influenza in
the US. Similarly, we found that international airline travel
influences the absolute timing of seasonal influenza mortality.
The flight ban in the US after the terrorist attack of

September 11, 2001, and the subsequent depression of the air
travel market provided a natural experiment for the
evaluation of the effect of flight restrictions on disease
spread. The importance of airline activity was highlighted by
the delayed peak of influenza in 2001–2002 following the
period of reduced flying activity. This finding is further
validated by the absence of a similar delay in influenza
activity in France, where flight restrictions were not imposed.
Our model suggests that September may be the critical month
for entry of new influenza strains into the US from foreign
countries, earlier than the established start of the US
influenza season in October/November. Although seasonal
influenza activity usually begins to increase as early as
October or November, current laboratory surveillance by
the WHO/NREVSS collaborating laboratories consistently
collects viral isolates in its first week of testing (week 40; first
week of October). Over the last eight influenza years (1997–
1998 to 2004–2005), 0.62% (standard deviation ¼ 0.59%) of
specimens on average test positive for influenza in the first
week of October, indicating that the introduction of new viral
strains has already occurred in September. Indeed, new
antigenically distinct strains result from a continuous evolu-
tionary process of small changes in influenza surface antigens
and are not limited to a given location or time period [24],
and therefore international travel in September can surely
not be the only mechanism of strain introduction.
While our study suggests that airline passenger volume

explains about 60% of the inter-annual variation in inter-
regional influenza spread and peak, there is still an
unexplained component. The timing of seasonal influenza
mortality could reflect the additional influences of climatic
conditions [19,25] rather than solely the introduction of new
strains into a susceptible population by airline travel.
However, we find that monthly national temperatures were
not a significant predictor in our models. Another issue is
that strain variation could have an effect on our measures.
Our models included a term for dominant subtype, which was
not found to be significant. Recent studies have shown that
influenza spreads more efficiently during seasons dominated
by subtype A/H3N2 than when A/H1N1 or B dominate
[7,9,19,26]. For instance, the 1981–1982 and 1990–1991
seasons, which were dominated by influenza B, were
substantially less synchronous than other seasons of the
1980s and 1990s [10]. Interestingly, the 2001–2002 season
(after September 11, 2001), where we found delayed spread,
was dominated by A/H3N2 circulation. In this case, lack of
synchrony cannot be explained by dominant subtype, which
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suggests that other factors (including reduced airline travel)
may have been responsible. In fact, our study period from
1996 to 2005 represents the longest stretch of A/H3N2 season
in over 30 y (seven out of nine seasons were dominated by A/
H3N2), essentially controlling for the effect of subtype. Yearly
changes in public health intervention strategies, such as
vaccination campaigns, and vaccine efficacy may also affect
patterns of spread. Improved vaccination coverage or strain
match in a given season would decrease the rate of disease
transmission and thus also slow the rate of spatial spread
[27,28]; such a scenario could have potentially caused the
delay that occurred in 2001–2002. Studies of influenza
mortality based on US multiple cause-of-death files [29]
provide longer and more comprehensive time series, and
enable a more detailed analysis of these multiple effects.
However, yearly data become available only after 3 y, and
therefore cannot be used for the current analysis. In contrast,
data from the 121 Cities Mortality Reporting System provide
a more current time series of influenza mortality that is
available for examining the recent fluctuations in human
travel, including evaluating the effect of the 2001–2002 flight
reduction on influenza spread.

Our study does, however, have certain limitations that are
inherent in the use of mortality data from the 121 Cities
Mortality Reporting System. One limitation is associated with
the voluntary design of the system. There is variability in time
of filing of death reports from week to week because of
changes in volunteer staff and insufficient staff to keep up
with reporting during the peak of the influenza season. We
observed that reporting quality varies with both time and city,
as evidenced by the presence of gaps (weeks with no data) and
anomalous behavior in some of the city time series. We
therefore stacked the raw city data according to major
geographic regions. This stacking enabled us to extract
coherent regional seasonal signal from the P&I data. These
results lead us to believe that the noise in the city data was
random and that there were no systematic biases that would
account for our findings. Furthermore, P&I mortality has
been validated as a good relative proxy for the severity of
influenza epidemics [30]. Thus, the use of these P&I data to
estimate relative seasonal curves of influenza mortality should
be appropriate as well.

We used influenza mortality time series data, which may
not correspond precisely to influenza activity. P&I mortality
reflects a somewhat uncertain mixture of deaths from
influenza and other respiratory diseases, and the proportion
of influenza deaths may vary with time. Furthermore,
although influenza strikes all age groups, non-pandemic
influenza mortality predominantly affects the elderly, and
older age groups typically peak later, while young children
peak earlier [31]. There may also be other factors related to
the biology of disease progression and associated complica-
tions that cause timing differences between influenza
morbidity and mortality. However, our analyses show that
influenza mortality patterns correspond with trends in
virological data from laboratory surveillance, which suggests
that we have captured a true pattern of influenza timing and
spread. Although a more detailed national dataset of
confirmed influenza infections and matched strain informa-
tion would be ideal, our study demonstrates how analyses of
imperfect influenza surveillance data can reveal important

spatial–temporal trends, providing potentially vital informa-
tion for disease prevention and control.
The alarming spread of the highly pathogenic avian

influenza A (subtype H5N1) in both wild and domestic
poultry in Southeast Asia and Europe [32,33], with probable
human-to-human transmission [34,35], has intensified the
debate over whether border control and travel restrictions
could substantially impede the spatial spread of an emerging
pandemic strain. Our results suggest that limiting domestic
airline volume would have a measurable impact on the rate of
spread of an influenza pandemic, and particularly on spread
across regions. Because influenza pandemics have shown
unusual spatial and demographic patterns as well as higher
basic reproductive number due to lack of immunity, the
relationship between air travel volume and domestic influ-
enza spread may nonetheless be different in a pandemic
scenario [36,37]. However, our finding that international
travel influences the timing of epidemic influenza should
apply directly to a pandemic scenario, where the objective
will be to reduce the probability of strain introduction.
Recent individual-based simulation models of pandemic

influenza transmission have attempted to model the effec-
tiveness of social distance measures, including travel restric-
tions [38,39]. While eliminating travel in and out of affected
areas along with imposing border restrictions may provide
some relief by delaying spread by up to 8 wk [38], drastic
reductions in domestic travel are required to have much
impact internally [38,40]. Although these simulation studies
have found that these strategies may not have a significant
impact on the course of a pandemic, the models lack
parameterization of the underlying relationship between air
travel and influenza spread based on experimental data.
Future work using simulation will benefit greatly from
parameter estimates based on empirical findings such as
those presented here.
Although the mechanisms driving the seasonality of

influenza epidemics are still not well understood, our findings
do suggest that fluctuations in airline travel have an impact
on large-scale spread of influenza. At the regional level, our
results suggest an important influence of international air
travel on influenza timing as well as an influence of domestic
air travel on influenza spread in the US. However, for the
global influenza pandemic widely believed to be inevitable
[41], the efficacy of travel advisories, flight restrictions, or
even complete flight bans as a control measure is still
uncertain. Though our results suggest a possible benefit of
airline travel restrictions, without early detection and
immediate action, such measures may be ineffective at
stemming the spread or mitigating the impact of an
oncoming pandemic [42]. Furthermore, even with a signifi-
cant travel ban, the rapid rate of influenza spread might still
outpace the capability to manufacture and distribute large
amounts of vaccine matched to the new variant [43]. Policy-
makers will also need to consider and balance the social,
constitutional, legal, economic, and logistic consequences of
such quarantine measures [44,45].

Supporting Information

Protocol S1. Additional Methods and Results

Found at DOI: 10.1371/journal.pmed.0030401.sd001 (844 KB DOC).
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Editors’ Summary

Background. In both the northern and southern hemispheres, influenza
epidemics occur annually during the winter ‘‘flu season.’’ Although the
disease maps out a remarkably similar pattern in most years, little is
known about the specific mechanisms by which geographic spread
occurs. Given the perennial possibility of influenza global epidemics
(pandemics) such as occurred in 1918, 1957, and 1969, as well as the
more recent, localized outbreaks of avian influenza (‘‘bird flu’’) in which a
high proportion of affected people have died, we need to understand
how influenza spreads in order to limit the destructive impact of future
pandemics.

Why Was This Study Done? In theory, airline travel might be expected
to play a role in the spread of influenza across large distances. If so,
reducing or restricting air travel might be an appropriate public health
intervention in the early stages of an influenza pandemic. This study was
performed to identify specific effects of air travel on the annual spread of
influenza in the United States.

What Did the Researchers Do and Find? The researchers analyzed
weekly government records on deaths from influenza and pneumonia in
cities from nine regions of the US during the nine influenza seasons
between 1996 and 2005. For each year, they determined the time it took
for the epidemic to spread across the US and the date of the national
peak in influenza deaths. They then used government estimates of
passenger air travel to explore any connection with the timing of the
annual flu epidemics.

The analysis found that the usual time for an influenza epidemic to
reach peak levels across the US was approximately two weeks, and that
the national peak date fell within two days of the average date, February
17, in five of the nine seasons. In general, influenza was found to spread
more slowly during years when the number of domestic air travelers,
particularly during November, was lower. Also, the peak of the influenza
season was found to come later during years when the number of

international air travelers, particularly in September, was lower. These
results, based on reported deaths from pneumonia or influenza, were
corroborated using data from an influenza virus surveillance program,
and could not be explained by variations in winter temperatures or by
different types of influenza virus circulating in different years.

Of note, the peak date of the US influenza season following
September 11, 2001, was delayed by 13 days to March 2, consistent with
marked reductions in airline travel following the terrorist attack, and then
returned to February 17 over the subsequent two influenza seasons as
international airline travel returned to its previous levels. In contrast, the
investigators found no delay in the 2001–2002 influenza season in
France, where flight restrictions were not imposed.

What Do These Findings Mean? While this study does not demonstrate
that travel restriction would be effective in altering the course of a flu
pandemic, it does provides evidence that air travel plays a significant role
in the annual spread of influenza in the United States. Although other
factors, related or unrelated to the decrease in air travel after September
11, may have affected the course of the 2001–2002 influenza season, the
general findings across several years suggest that air travel affects both
the peak date and the rate of spread of influenza. These findings merit
consideration in the process of preparing for the next influenza
pandemic.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0030401.

� World Health Organization: influenza pandemic preparedness page
� US Department of Health and Human Services: avian and pandemic flu

information site
� Wikipedia page on influenza pandemic (note: Wikipedia is a free

Internet encyclopedia that anyone can edit)
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