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A 3-D Visualization Method for Image-Guided
Brain Surgery

N. G. Bourbakis Fellow, IEEEand M. Awad

Abstract—This paper deals with a three-dimensional (3-D) MRI coregisters the patient coordinates, the surgical tool, the
methodology for brain tumor image-guided surgery. The method- preoperative images as well as images acquired during surgery
ology is based on development of a visualization process that 5)10ing almost real time navigation and reducing to a minimum
mimics the human surgeon behavior and decision-making. In . . . ) .
particular, it originally constructs a 3-D representation of a tumor any potential m'SCQnC_ept_'on of the problem.s extent. D_ependlng
by using the segmented version of the two-dimensional (2-D) On the tumor location inside the human brain, surgery is usually
MRI images. Then it develops an optimal path for the tumor the first step in treating brain tumors. Due to state of the art
extraction based on minimizing the surgical effort and penetration  imaging techniques and instrumentation, 90-99% surgical re-

area. A cost function, incorporated in this process, minimizes the /) js now really possible with preservation of surrounding
damage surrounding healthy tissues taking into consideration the healthy brain [1], [2]

constraints of a new snake-like surgical tool proposed here. The ; o ‘ . . . . .
tumor extraction method presented in this paper is compared witn ~ Diagnostic imaging techniques facilitate in localizing lesions
the ordinary method used on brain surgery, which is based on a and tumors as well as determine the topographical relations be-

straight-line based surgical tool. lllustrative examples based on tween the lesions and the anatomic intracranial structures. Di-
real simulations present the advantages of the 3-D methodology agnostic accuracy allows the surgeon to work precisely with an
proposed here. increasing efficiency. Smaller incisions, less tissue trauma, and
_Index Terms—maging, MRI guided brain surger, three-dimen-  petter surgical planning have reduced the risk of brain surgery
sional (3-D) visualization. from almost 90% in the 1940s to about 2% in the 1990s [2],
[25].
l. INTRODUCTION However, due to the special set up in the operating room that

NTIL t decad bidit d ful creates a magnetic field of 0.5 T, no robotic devices can be
U 1L recent decades, Morbidily and Unsuccessiul Sulflsey anqg the operation ends up being “decided” and executed
eries were accepted by both the surgical society and

. ) . uman surgeons. But what if the surgeon has a pronounced
patients as unavoidable consequences of therapy. In traditi

isualization is i lete. Th Vi d tremor, or lacks some expert’ techniques? The operation
neuro-surgery, visuaiizalion Is incomplete. The surgeon, relyifg o me could be severely jeopardized and despite all the state
on the small surgical opening lacks the spatial clues to ass

, L >SEPthe art 3-D visualization, instrumentation and coregistration
the tumor’s extent and to plan the extraction in the least rISlf chniques, the surgery would be closer to a traditional case
approach. With the recent advances in radiology, the availa Shat sucéess is areatly affected by luck. Today. all the MRI
imaging modalities such as CT, PET, MRI, fMRI, and MRAU g y y . Y.

. S ) .. driven brain surgeries use the same surgical tool and more or
contribute to the reduction in the mortality rates by providing Nass the same approach, “a straight line-based penetration of the

sight for surgical planning and replacing the minimally invasiv, rain” by the suraical tool for extracting a candidate tumor [4
surgeries [1]-[10], [15]-[18], [20]. Two-dimensional (2—D) aniﬁlo]I [2733 urg! X "9 ! . [41
localizing the tumor within the complex anatomical neighbor- In this paper, we propose a different visualization process that

hood of the brain cells is a challenging problem. Due to the n imics the surgeon decision making. Taking into consideration

compgter andctj:ommlu?lcat_m_n technolog(ljej_, ccl)upled \t’v'th the d Irgical expertise’ practices as well as surgical tool constraints,
ways Improved resolution inimaging and dispiay Systems, Sy, algorithm would analyze every case and return the optimal

eral softwgre tools, such as Brain Voyager, Voxeline, VoxBla ath that can be executed by a surgeon or by a flexible robotic
Neuronawgatqr, Volpagk, etc., have been developed ?”d U using a new surgical tool “snake-like” presented here.

for reconstructing 3-D views from the stack of preoperative 2-

images [19] and [21]. As a result surgical planning and decision
making improved, cutting short the surgical time and allowing
the surgeon to concentrate more on executing the preoperativifisualization during traditional surgery is an inherent
plan than to decide subsequent steps. Moreover, nowadays awifblem. Because of the small surgical opening and the re-

able in selected centers, a new system called the intra-operagition of light intensity in the depth of the operating field,
the surgeon lacks the spatial clues to accurately understand
. . . _ the tumor extent and its localization with respect to vital cells:
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Fig. 1. Tumor shape extraction from 2-D MRI images.

Mor smaothod Tumrar chaps Smosthed Tumor shape
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Fig. 2. Enhanced MRI set.
TABLE |
5 N represents the slice number ahé for degrees.
degrees
2 : N 4 7 10 13
9? 5 4 2.5 1.5
Fig. 3. \Vertical cross section of the surgical tool.
Uppermost slice 1 Lowermost slice N

A. Intra-Operative MRI [11]

Recent advances in imaging techniques, acquisition equ
ment, visualization software tools are making medicine impro
at quick pace into image guided surgery. Now, the hand of tl
surgeon can be guided in mid-operation. Localization of tuma
or lesions, assessments of their extents, as well as an optil
safe path for tumor resection are being available in today’s ¢
erating rooms. The latter development allows surgical manip
lation under direct visualization of the brain contents throuc
both the eyes of the surgeon and the volumetric images of the _
MRI system. During the actual surgery, the previously acquireF%?' 4. Uppermost and lowermost slices.
fMRI, MRA, and MRI (under a 1.5 T field) are coregistered in
a frameless stereotactic manner into the physical space of thén this way the surgeon is able to assess the progress in the
patient together with the near real time images that are acquisdgery and to modify, if need be, his or her preplanned approach
during the course of the surgery. The use of LED based optickiring the surgery. The surgeon can account for instance for the
tracking of surgical instruments precisely localizes the surgicattual path of the surgical tool, for some patient’'s movement,
instrument end with respect to the anatomic structure of the MBhd for brain shifting [28]. Brain shift is a major problem for a
images [1]. surgery not discussed here.
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Limiting path ]:] Candidate region

Fig. 5. Mid-points.

Brain slice at leveli @ Path coordinates

Fig. 6. Approach A.

I1l. 3-D REPRESENTATION OFTUMORS

The 3-D representation of a tumor is based on the accurate ex-
traction of the 2-D shape of the tumor from the corresponding
MRI images [12]-[14], [22], [24], [26]. Thus, the extraction
of the shape of a tumor, requires the 2-D MRI segmented im-
ages are to be searched for the particular value of the tumor.
The pixels’ positions of the tumor are stored and the marchiggy 7. aApproach B.
cube algorithm is applied to get the 3-D surface representation.

For simulation purposes, MRI slices were corrupted with tumor,
the whole set of 27 MRI slices were searched, shape extraction
using the edge detection technique at every level is applied and
the region of interest is extracted. Tested and simulated results
are shown in Figs. 1 and 2.

The 3-D tumor representation for this case is shown in
Fig. 2(a). Applying a Gaussian filter the 3-D representation is
smoothed, as shown in Fig. 2(b). Fig. 8. Approach C.

IV. A SURGICAL TOOL AND AN OPTIMAL PATH Fig. 3, by similarity to its progressive motion is being developed
APPROACH FORTUMORS EXTRACTION but is restricted for small neurosurgical cases involving brain

ventricles [24].

In this application, the ideal tool is one that will be pro-

The design and construction of any innovative device espgressing inside the brain layers in a “snake” fashion walk
cially one dedicated for neurosurgery is always a great challengaching for exactly the desired coordinates and avoiding vital
for engineers. A successful design of a safe, useful design hwails and blood vessels. In order to minimize brain damage
to meet medical standards, surgeons and patients needs. Tgpd avoid vital parts of the brain as the probe travels toward
cally it is difficult to have a reliable and ready to use device ithe tumor flexible, resistant, and allergic free materials are
a one-shot development life cycle. Many prototypes are testegeded. It would consist of hollow concentric cylinders that
and their feedback reports provide guidance toward quicker agxtent under demand. A maximum deviation ¢f Between
safer results. Although medical robotics is relatively a new tectwo consecutive insertion depths of the surgical tool is allowed
nology for neuro-surgery, there is no dispute for having roboties this design. From the control unit, the surgeon or the robotic
replacing physical human process. Research is being focuseeh can execute the predefined plan. By a sensitive pressure
on the instrumentation part for neuro-surgery both from matmechanism the push buttons allow the tool to extend progres-
rial selection and shape design aspects. Surgical tools’ speively in order to reach for the deep layers. The light gray
fications are case dependant. Usually the most used materiakiers to hollow cylinder allowing the sliding of the extensible
titanium for its light characteristics. Aluminum is used speciallparts. The pressure required to extend each part would be a
when reaching for tumors in a straight way manner. Up to dafenction of the insertion depth. The extensible parts would
the commonly used neuro-surgical tools have a lot of constraiti@ve different strength depending on the insertion depth. By a
in terms of flexibility and are a major factor in determining theotation mechanism, the robotic arm or a surgeon can determine
surgery success — according to Dr. Bajwa, a neurosurgeortte angle of deviation wanted to achieve before the tip extends
Wilson’s Hospital, NY. A tool known by the name tdnake,” to reach the terminal point. Once the first strategic point is

A. Design of a New Flexible Surgical Tool [23]
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@4/ Irregular tumor shape

O ¢ Ellipse generated by the 5 degrees maximum tool flexibility

<«———— Brain MRI slice assumed of constant color for display purposes

<+— Boundaries of reachable region

Fig. 9. Enclosed area for Approach B.

reached, two lateral extension would extend horizontally undauthor. The algorithm is intended to be a general case solver.
a pressure mechanism for two reasons: 1) to lock the toolTime steps involved are:

this position and allow a precise extension of its tip, and 2) to 1) From a set of 2-D MRI, volume representation using the
make way for the tool tip into the brain layers. marching cube theorem is performed.

The last tool extension that is extracting the tumor is aremov- 2) Main goal is to reach a tumor with the least possible brain
able part that depends on the tumor type. For smoother insertion damage (if such a path exists) in an intelligent manner
a V-point tip would be more suitable for the surgery specially without irrelevant and redundant path calculation. The
that for deeply located tumor effort should be exerted on the  problem, at a first glance, is a NP type. Given a set of
brain cells to make way for an “intruder.” When the surgical ex- starting points on the cortex surfag, a more or less
tensible tool’s tip is a dull flat end, more damage and pressure  straight path is desired in order to connect any pBir

is needed for insertion than in the case of a V-point. S, to strategic poin€ € A whereA is the set of infected
This potential surgical tool would be feasible with the future brain cells that belong to the first infected sli€eencoun-
micro-level technology that is changing our conception of in- tered in a surface to bottom penetration.
struments’ size in a swifting revolutionary manner. 3) Once a path is identified, the information can be safely
transferred to a slave robot in order to perform the extrac-
tion.
B. An Optimal Path Approach Decision-making is the key toward successful surgical op-

erations. Even the most accurate surgeons are prone to errors
The main purpose is to develop a “thinking algorithm,” oand their performance, in similar surgeries, is alienated to their
strategy, for planning a surgery instead of the surgeon giveroods and their fatigue, which can drastically shape the out-
some input from experts and many assumptions made by twmne. The intra-operative MRI is a revolutionary achievement
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Fig. 10. Enclosed area for Approach C.

¢ play an important role in decision-making. We believe that if

the best surgical expertise’s practice as well as today surgical
tool’s constraints were fed into a “smart” algorithm, the surgery
will be moving toward safer milieu. Analyzing every case indi-
vidually according to the expert state of the art approaches, the
algorithm would return the optimal path to extract the tumor.
This is an affordable approach for improving surgical outcome
at no extra cost of surgical equipment and surgical room design.
The application will be also useful for novice medical surgeons
to test their plans versus the software outcome. This way the
patient safety and recovery rate will not be affected to a great
Fig. 11.  Cone of paths in consecutive levels. extent by the surgeon’s personal experience and mood. We are
not claiming that the robot surgeon using the available surgical
for surgery. The state of the art imaging technology, the quitkols in their present development can totally replace the human
data acquisition process, and the special set up of the opmrrgeon, and act independently, but if instructed efficiently and
ating room allow even more surgeons to take part in the desing Amsgtrom level surgical tools it can be a reliable slave to
cision-making thus reducing the potential risks of traditiona&larry out the surgery with astonishing precision.
surgeries. However the decision and the execution still stemWith its current implementation, this work doesn'’t take into
from humans where experience, practice, subjectivity, and b@msideration brain shift during the surgery, which is a serious

Level 1
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Level Tt
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Level 1

Level T

Fig. 12. Projected paths through consecutive layers.
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Fig. 13.  Selection of the next point.
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; __ Level T-1

Level T-2

Fig. 16. Enhanced MRI set.

problem already raised in Section Ill. Future development of
this work can focus on this aspect and the application will be
more realistic.

C. Assumptions

In developing this approach, the following assumptions were
made:

The tumor is a compact 3-D manifold. The search is applied
to strategic points of the tumor. The surgical tool is constrained
to a maximum degree of deviation from vertical position in pen-
etrating two consecutive brain slices, its end’s dimensions are of

Fig. 14.  Circular area within the same layer. a pixel size. For 256 x 256 x 128 MRI stack, a total of 8.5

zZ

billions pixels can be displayed. Since the brain is estimated to

have about ten billions cells, a pixel is 11 times a cell dimen-
Y’ sion. The tool flexibility function depends on the depth it has to

travel inside the brain, the following relationship was used:

y @ ¥ = 0.0062n"* — 0.1574n"? 4 0.8241n + 3.8272

wheren is the slice number and in degrees, Table I. For an

assumed intra-planar distance of 13 mm:Once strategic tumor

/ 0 point C € A is reached via “the most appropriate path,” the

/
¥ X

problem is solved. The MRI data set used in this application
contains all the relevant anatomical and functional features nec-
essary for practical surgical planning. The pixels are assigned
integer values referring to the cells’ functionality, their type and

Fig. 15. The 3-D axis and the projected one. location with respect to vital areas, with the least expensive brain
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Fig. 17.  Simulated results.

cells having the highest value. No brain shift modeling is takasf matrix I is a function associating tissue type (which is

into account, rather brain structures are assumed to remairobtained from the segmentation results of the MRI), to the
the same position preoperatively and during the surgery.  functionality (obtained from the fMRI) to the tissue resistance,
to the presence of the vessels within this point. We aim to
minimizeI(x, y, z) given the surgical tool constraints stated in

the assumptions and that will be detailed in step 7.

The steps required for the modeling and implementation of —L et Sen(x, y, z) be a matrix representing functionality of

D. Methodology

the method proposed here are, Fig. 11-15. the cells and their sensitivity with high values for important
1) LetS be a stack oN slices that cover the whole brain.  cells.
2) Every sliceM of the stackS has an intensity matrix —LetBL(x,y,z) be a matrix representing presence of blood

I(x,y,7) correlating every pixel to a scalar value. Every entryessels with high values for arteries and primary veins.
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Fig. 18. Simulated results.

—LetCy(x,y,7) = TISen(x,y,z)*BL(x,y,7), sothatbrain  —Finally I(x,y,7) can be expressed as
cells with crucial functionality and high vascularity tend to have
really high cost.

—Let TI(x,y,z) be the tissue resistance of a given pixel.
—LetF(x,y) bee~4 whered is the distance of poirit, y, z)
from the center of gravity of the grouping of tissues it belon

to in this particular slice,

I(X7 Y Z) = ECl(X7 Y Z) + 02(X7 Y Z)

TIl, Sen, BL are determined by fMRI, MRA, and brain mod-
eling characteristics they can be found in today’s brain atlases.
glshey are standard and patient independent.

3) Leti = 1 denotes the surface slice ahd= N the most

—G(oy) =F(xy)/(F(xy) + F(—x —-y)) and bottom slice available in the Matlab MRI stack; see Fig. 4. Itis
actually a half set of MRI, covering till the eye and nose level.
H(x,y) =G(-2d +2) x G(2d +2) 4) Leti = T denotes the first contaminated slice reached from

Ca(x,y,7) =TI(x,y,7) x z+ H(x,y) x TI(x,y,7) the surface
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Fig. 19.

Fig. 20.

5) Let A be the set of all points corresponding to “ill” cells inclosed envelope. Tumor shape is case dependant and in most
slice T. We assume thai is a filled region with a continuous case unpredictable. In order to make the search smarter and less

Simulated results.
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Fig. 21.  Simulated results.

redundant, strategic points are assigned to some pixel values of
areaA. If A is a familiar geometric shape, the best points to
retain for starting the search would be the center of gravity of
areaA as well as other centers of gravity for subareas created
insideA. Fig. 4(d) illustrates some examples. If the tumor is an
irregular shape -which is the practical case- edge detection fol-
lowed by thinning algorithm and skeletonization procedures can
be applied and the most essential line features of the tumor are
retained. Along these representative lines mid-points (referred
in Fig. 5 by black dots) are retained as strategic points

At this stage three different approaches were studied to solve
this problem. The approach A (ordinary) assumes that the best
path is confined to a vertical insertion and the tool is not allowed
to have an initial angle with respect to the uppermost brain sligag. 22.
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Fig. 23.  Simulated results.

The search will include only pixels confined to a window builhumber 1 using a least square method (LSM) procedure. The

around the strategic tumor points and defined by the tool flegenter, minoBm and majorAm axis are calculated.

ibility. An example is shown, Fig. 6, for illustration purposes. 6) The physical possible starting spd¢ds projected onto

As can be easily guessed, this approach might not give the bibst subsequent slice @f. In this way we are able to track all

possible path if this path exists along an angle with respectttee good subsequent points if the paiit;, y;) is the ultimate

the vertical. target of the surgical tool. This can be done using 2 approaches.
Approaches B and C ( Fig. 7-8) assume that the best path cain the Approach B, ellipsé: is projected on slice T-1 along

have an angle with respect to the vertical. An ellifsgrouping the line joining one tumor pixel to the center of elligseusing

all the physically possible starting points regardless of cost furaimple geometry (Thales theorem). The search will be confined

tion and cells vitality is identified on the cortex surface on slice the ellipse inside the conical shape in Fig. 9. This case is
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Fig. 24. Simulated results.

closer to most practical cases where the tool is really confinedao angle of{(180° — (F — 1)xalpha)/2 where alpha is the tool

straight path insertion. Studying the enclosed area by the cdlexibility, and F the current slice number.

and the brain contour at level T-1 will include all the possible 7) The intersection of either method in 3-D space with the

straight paths targeting this particular tumor point. subsequent slice in a bottom to top manner is represented with
In the Approach C the end points of the minor and major axésgreen ellipsdi1 in Figs 9—10. Evaluat&(x, y,z) for all the

of the uppermost ellipse are joined to the strategic points of theints within the region bounded by ellipgd and the brain

tumor via a regular polygon whose angle and number of sidesntour in slice T-1.

depend on the tool’s flexibility as well the tumor’s depth inside 8) Let AT1 be the set of the nonexpensive pixels. Since the

the brain. Notice that this approach gives wider intersectiopath decision cannot be made at this level, it is important to

for subsequent levels of sli¢e than approach B, and it would study all the pixels that can be good candidates and belong to

probably return less expensive paths if these exist within thee interval [nin —e, min +¢]. A path with absolute zero cost

area not covered by approach B. The regular polygon will hagannot be found, but a relatively inexpensive one is what we
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+ Approach A

+ Approach b be common to have more than one good point that went through

+ Approach C

Eirmcton pan for tumorin et ¢ paths that starts rather high but end up real cheap. Since it might

the preliminary selection in the same elligsé that have more

than one parent, it is important to keep track of the hierarchy of
generation. Shades of grayness represent the fuzzy cost associ-
ated with the candidate points retained from every level.

9) From every point P of AT1, an ellipsEE is drawn on
slice T-2 with major axis acc and minor axis bcc. The ellipse
, results from the intersection of slice T-2 with a cone having an
L opening ofx degreesx is a function of the slice depth) with
respect to the line joining P and its parent pixel in slicelhese
ellipses are represented in Fig. 1. Notice that “good children”
pixels in level T-1 can have more than one parent in slick is
v ApproschA essential to keep track of the hierarchy of generation because the
+ Apooane ellipses’ directivities depends on it and the tool is constrained in
its motion and cannot reach any point from anywhere.

10) The same procedure described above is applied for the
“good children” pixels. They are projected along the line joining
them to the parent pixel and the cone corresponding to the tool
flexibility intersects the brain contour at slice T-2 resulting in
an ellipseke shown in Fig. 1 that will enclose all the possible
candidate pixels. Evaluafiéx, y, z) for only points. The least
expensive points of cost CT2 are stored in AT2.

11) Step 8 is repeated until the brain cortex surface is
reached. In order to determine the specific trajectory the tool
has to follow, a backward search starts from the uppermost
slice. The surface points that proved themselves good candidate

a4 N W A O O o~

-

TW are traced back and the total cost of the path is calculated. The
Pt I T arenc least expensive path is chosen. It is not imperative that this path
1 S T S S I e is not dangerous: it is the least expensive path to follow if an

extraction is to be carried out. If many vital cells were involved,
radio-surgery or chemical therapy would be safer in this case.

Appendix A: Given: EllipseE enclosing brain contour at the
uppermost level.

E has cente©(xo, yo) with major axisOA = am, minor
axisOB = bm.

Tumort at level T.

Find the ellipsé<E center, axis and orientation in level T-1;

> OE is the cone axis of ope_ning

delta = arctan(OA /(T — 1) x scaling)  with

Fig. 25. Screening the candidate points retained at every level And searchialing being the inter-planar distance between the MR slices.

for the least expensive reachable path. E’ is the vertical projection of tumor point E on plane T-1;
Using simple geometry AE’ and E'B’ can be found be

are aftere is determined by assign a membership function to scaling

the pixel values in order to represent their degrees of “good- A'E :m

ness.” The membership function is a fuzzy one using the sig- scaling 8

moid function to restraint the search within acceptable limits. At and B'E’ =

every slice, the minimum cost MC to pay in order to go through (T — 1)#scaling

this level is assumed known from the atlas discussed in step Z'he major axis of ellips€E isam = (A'E’ + B'E’)/2, and
and this value is mapped as 1 into the fuzzy set. While studyiitg minor axisbm = (C'E’' + D'E’") /2

the pixel values enclosed by ellip&d, elimination of expen-  If am > A’E’ point E’' has to be shifted to the left by an
sive pixels is done according their “cost” with respect to MCamount equal toam — A’E’) along the normalized vectar'E/,
Grades are assigned to them and pixels that are within an acceftterwise E’ is shifted to the right, and we obtain the true center
able range and that have at least one parent from the previofi®llipse EE. Ellipse EE will have its major axis along the
level are retained. All candidate points are stored and invediprizontal just like E.

gated because we are after the least expensive total cost of théppendix B: We assume that tumor poihand the extremity
path and rejecting at an early stage all points except one par-of the major axis of ellipsd: are connected by a regular
ticular value will jeopardize the outcome and eliminate possibplygon with a number of sides equalio= 2  pi/alpha so



BOURBAKIS AND AWAD: 3-D VISUALIZATION METHOD FOR IMAGE-GUIDED BRAIN SURGERY 779

TABLE I
SIMULATION RESULTS
Tumor position Computation Time Number of enclosed
points at T-1
in slice 13 @
Approach A 173.89
Approach B 40.75 143
Approach C 678.18 1302
in slice 10+
Approach A NA
Approach B 27.41 117
Approach C 427.71 1164
in slice 7 *
Approach A 192.08
Approach B 30.65 269
Approach C 39.61 608
in slice 4 *
Approach A 21.32
Approach B 12.31 124
Approach C 30.7 548

*Tumor localized at (75,76); (74,61); (72,72); (68,70); (68,71); (69,70); (69,71); (67,68)
+ Tumor localized at (50,40);(50,41);(51,40);(51,41)

@ Tumor localized at (84,39);(83,40);(67,68);(69,70);(76,56)

the polygon angle i = (PI — (T — 1)alpha)/2; (alpha = After analysis of ellips&E (got from either approach B or C)
tool flexibility angle). pixel values, assume point F alone is retained as best candidate
Our purpose is to determine length UA'and U’B’ in order taat this level. We need to draw the ellipse EEE corresponding
localize the intersection of the regular polygon in 3-D space with the tool constraints on level T-2. The axis of the cone which
level T-1. The angle of the cone AtB is will intersects plane T-2 with EEE passes through points E and

AYA F. Let F” be the intersection point of this line with T-2 and F’

delta = arctan——————; the vertical projection of F on planeT-2
(T — 1) x scaling

Ut’ = scaling * tan(delta + 7). angle(F”"FR’) = alpha = tool flexibility

Same procedure is applied with points B), (t, C), (t, D) F”F’ =scalingx tan(F”FF)
and the am1 major and bm1 minor axis length of the ellipRe RF” =scaling* tan(2+F"FF’ + R'FF/
resulting from the intersection of the regular polygon in deter- arctan(FF)

i i ill shi iecti R’F/ =scaling * tan | —————~ — F"'FF’
mined. The ellipse center will shifted from the projectiontof g ( scaling >

on level T-1 with an amount equal to the difference between o1 p—

(am1-Ut) along the direction of vecter\. ) F R = scaling + tan(F"FF")
Appendix C: Finding generated ellipse by tool constraints at ~ 1MaJor axis of

level T-2 for both approaches B and C. EEE aml =0.5+(F"R’ + F”R
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TABLE Il Matlab Simulation for a tumor assumed at level 13 and in the
SIMULATION RESULTS following positions (84,39); (83,40); (67,68); (69,70); (76,56);
using approach B
Tumor Comp. Encl. | Cost Matlab ~ Simulation  for ~a  tumor  assumed
position Time pts at level 13 and in the following positions
e 3@ (84,39);(8_3,40);(6_7,68);_(69,70);(76,_56);using approach C
An additional simulation was carried out for different tumor
Approach | 40.75 40 857 points, localized at different depth. Results for case studies are
A tabulated below.
Approach | 173.89 924 | 866 From the simulation, the higher the cost the better is the ap-
B proach.
Approach | 678 3302 | *979*
C, V. CONCLUSION AND DISCUSSION
slice 7 *
Approach | 12.08 60 536 A. Discussion
:pproach 3065 769 K] Sinpe the Work was perform_ed ona nonsegmented_MRI se_t,
B there is no meaningful correlation between the anatomical brain
Approach | 39.61 608 *602* differences and the pixel value. Total cost of the path is not rele-
vant to favor one method over the other. Depending on a patrtic-
slice 4 * ular tumor’s position, one approach would prove its supremacy
Approach | 11.32 40 281 over another. Since the patient safety is in question and there is
‘1: T5531 53 375 no “free path” but rather cheap paths, it would be recommended
Bpproac ’ to perform the three approaches and decide on the least expen-
Approach | 30.7 989 *319% sive trajectory The three approaches cover all the possible ways
to reach the tumor. Approach B is in a way a particular case
*Tumor localized at of approach C. Ideally approach C is the best since it encloses
g;zg; (74,61); (72,72); (68,70); (68,71); (69,70); (69,71); more points to study at level T-1 thus there is more opportuni-
@ Tumor localized at (84,39);(83,40);(67,68):(69,70); ties to pick cheaper paths than the other approaches. However,
(7656) , ‘ given the tool flexibility constraints, some cheap points at level
From the simulation, the higher the cost the better is the . .
approach, T-1, might not lead to any good end, and approach C might not

return the relatively cheaper path. In the following table, com-

Center O” of EEE will be shifted from F” by an amount equaPutations time as well as initial number of points investigated
to (RF"-am1) along the normalized vectBfF’ depending on at level T-1 are tabulated. Time factor is really not the major
the difference between RF” and am1. concern because this analysis is done preoperatively and there

The minor axis is perpendicular to the major axis. Using tH& no time constraint. Besides given the ever-increasing speed of
dot product between vector FO” and RR’ angle FO"Q is foungomputers, processing and quick renderings are drastically im-
Using the sine rule in triangle FO"Q, O” Q can be found. Finallproved.
ellipse EEE translated to the origin rotated by the angle alpha
&, then translated to its respective center using the followiry Conclusion
formulas for figure rotation: Surgery planning and decision making are the key toward a

; o NN [ .y successful operation.

X' = Xxcos(d) = Yasin(d); Y7 = Yicos(d + Xusin(d)) With the image guided surgery, scans (MRI, CT, or PET
(Note that for axis rotation formulas ar&’ = Xxcos(d) + scans) are acquired prior to surgery and loaded onto a computer
Yxsin(d);; Y = Yxcos(d) — Xxsin(d) workstation. The workstation is connected to a position sensor

It is important to keep track of the parent that generate tla@gd the images registered to the patient just before surgery, or
good children at a subsequent level in order to be able to bafilking surgery. The surgeon uses instruments connected to the
track the path and not violate the tool constraint flexibility.  position sensor to view the images at the location that he or she

) . is touching. With all the state of the art imaging techniques and
E. Simulation Results facilities, the surgeon has still to decide by himself or herself

The initial MRI set, Fig. 16, used is available in the Matlalthe way to resect the tumor.

5.2 image processing toolbox. In order to improve the visual ap-If anatomical information as well as cells type, functionality
pearance of every slicé without modifying its pixel informa- and vessels position were coded in the MRI set and fed to an
tion, every pixel value is divided by the fracti@d5/ max(T). algorithm given the tool constraint that is intended to be, all
The following MRI set results, Fig. 17-25, Tables II-lll, fromthe possible paths and their respective costs can be calculated.
this enhancement operation Since the algorithm will be choosing the path according to the

Matlab Simulation for a tumor assumed at level 13 and in trexperts rules and decision making, it would perform better than
following positions (84,39); (83,40); (67,68); (69,70); (76,56)pure human decision where fatigue and personal problems will
using approach A bias the surgeon decision and thus the outcome of the operation.
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It will lead to smaller craniotomies, reduced hospital stays. 1{24] M. Awad and N. Bourbakis, “A robotic based surgery using 3-D MRI
serves as a confirmation to surgeons in the case of tumors I?2_5] images,” inProc. IEEE Symp. IARL999, pp. 126-132.

cated in critical areas such as the motor cortex.

A. King et al, “Recent advances in biomechanics of brain injury re-
search review,J. Neuro, vol. 12, no. 4, pp. 651-658, 1995.

We tried to illustrate this by investigating all the possible[26] S. Atkins, “Fully automatic segmentation of the brain in MREEE
paths that can reach the tumor given into consideration the_  Trans. Med. Imagwvol. 17, Feb 1998.

[27] M. Clarket al, “Automatic tumor segmentation using knowledge-based

tool fIgX|b|I|ty constraints. Future work would perf_orm the techniques, IEEE Trans. Med. Imagyol. 17, Apr. 1998.
analysis on real segmented MRI data set, and would incorporates] D. Robertset al, “Intraoperative brain shift and deformation: A quanti-
3-D-path visualization with respect to brain anatomy. Modeling tative clinical analysis of cortical displacements in 28 casig(iro. J,

of brain shift has to be incorporated in order to make the

vol. 43, no. 4, pp. 749-760, 1998.

application more realistic and helpful. With the sophisticated
ultra sound features used in neuro-surgery, the path can be
readjusted to accommodate for the brain shift.
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