
Applying Plagiarism Detection to
Engineering Education

Juan José Garcı́a Adeva, Nicholas L. Carroll, and Rafael A. Calvo
School of Electrical and Information Engineering

University of Sydney, NSW 2006
{jjga,ncarroll,rafa}@ee.usyd.edu.au

Abstract— We describe a novel plagiarism detection system and
its integration with an e-portfolio used in first year engineering
teaching. The tool addresses an important issue arising from
the decreasing barriers to information access. Academics know
that information can support valuable learning experiences, but
these experiences are diminished when students plagiarise by
copying assignments and getting credit for work they have not
done. While it is possible for academics to develop project-based
activities to make it harder for students to plagiarise work from
outside sources, some students will still copy work done by others
within the same class, which can be especially difficult to detect
within large cohorts. According to student feedback received
while assessing an e-portfolio activity, we found that students
were also concerned about plagiarism, and that they modify their
approaches to learning based on this concern. We developed a
plagiarism detection tool called Beagle, which uses an internal
method (also known as collusion): whenever a student submits
an assignment to the e-portfolio system, it is compared to those
previously submitted by other students. Beagle measures the
statistical similarity between students’ work using text mining
methods. When a specific similarity threshold is reached, the
work can be flagged as possible plagiarism or the system can
automatically warn the student and request that they resubmit
their work. In this paper we present the design of the system,
a performance evaluation in terms of accuracy and execution
time, and a description of its application integration capabilities
through web services.

I. INTRODUCTION

As with all new technological developments, the Internet

has brought new challenges and opportunities to the field

of Education. The Internet changes students’ perceptions on

how they access information, how they collaborate, and how

they approach learning. These changes are sometimes helpful,

leading students towards deeper approaches to learning. How-

ever, they may also have negative influences, leading students

towards superficial approaches, hence making their tasks easier

at the expense of a diminished learning experience.

Recent pedagogical research shows that learning is not

simply assimilating knowledge with the help of a more

knowledgeable person or computer system, but also jointly

constructed by problem-solving with peers [1], [2] through a

process of building shared understanding and reflection [3].

The need to support these activities in an online environment,

together with recent advancements in web applications, have

led to the greater use of tools for online learning.

Regrettably, many students take a superficial approach to

learning, undertaking it as a process where they are only

required to complete certain tasks. In this situation, the time

spent looking for an answer is seen as wasted, since it

is only an obstacle to completing those tasks. Furthermore,

collaboration and reflection are often seen as additional tasks

that must be fulfilled to satisfy the assessment, and not as a

learning experience.

Many learners see the Internet as their main source of

information, they use it as an optimal way of finding the

right answers for these tasks. They are often unable to discern

the reliability of a particular source and in this superficial

approach, learners also tend to fulfill the task with ideas, and

even literal text, provided by these sources. Furthermore, an

increasing number of students do not acknowledge the sources,

misleading the teachers into believing the work is their own

contribution. This is one of the forms of what universities call

academic dishonesty.

Online teaching may have negative side effects, reinforcing

these superficial approaches. Teachers have addressed these

problems in several ways: i) with novel education designs

that promote the right approaches to learning by supporting

meaningful collaboration and reflective processes and ii) with

technologies that detect dishonest behaviours, which are symp-

tomatic of inappropriate approaches.

Our approach is novel in that it supports both evidence-

based educational design and technological tools that support

deep learning approaches.

Blogs are the most current trend in publishing content on

the Internet [4]. They are designed so that users can easily

maintain a journal with periodic postings, and its concept has

attracted the attention of researchers and publishers alike. They

can be integrated into educational support tools so that they

can be used as an extension of classroom activities. They can

support collaboration and reflection. They can also become

part of an electronic portfolio, that allows students to show

their journals as evidence of their learning experiences. Using

a method for determining whether a technology can support

the learning outcomes of a course [5], it was found that blogs

can easily be adapted to suit pedagogy, and are considered to

be a viable technology for supporting reflective learning [6],

[7].

Unfortunately, as teachers engaged in online teaching

quickly recognise, online supervision and support are too

time consuming tasks. In a class of 100 students, a weekly

posting per student during a 10 week period becomes an

1-4244-0406-1/06/$20.00 ©2006 IEEE.

insurmountable 1000 documents to read and provide feedback

on. In engineering degrees, first year cohorts of several hun-

dred students are the standard. Detecting plagiarism is hard

or impossible for these large classes, as the sheer amount of

documents to be checked makes the task too expensive. This

is recognised by teachers who are hence inclined to not give

any assessment weight and remove these activities altogether.

Language technologies such as Information Retrieval (e.g.

search engines) or document comparison systems (e.g. services

such as Turnitin) are usually employed to detect plagiarism.

Teachers can post a portion of the students posting in a search

engine (or submit an assignment to the service) and see if

other students have posted the same text. Although technically

sound, these are not always 1) scalable, since it takes time for

the lecturer to act on each posting, 2) part of a more profound

educational design that tackles the deeper issue of students’

learning, as opposed to just students’ dishonesty.

Our approach brings Language Technologies, also called

Language Engineering or Text Mining, to evidence-based

design of online teaching activities and software tools.

In Section II we describe the different procedures commonly

used to detect or deter plagiarism. They include both software

tools and instructional design strategies. Although the text

mining techniques we describe could be applied to other edu-

cational goals, we have opted to focus on plagiarism detection

as it is a well-defined field, with plenty of literature and even

commercial products that offer partial solutions to which we

can compare our approach. In Section III we describe an

electronic portfolio system called dotFOLIO and the student’s

activity that provides the educational context in which the

plagiarism detection tool is used. Section IV introduces the

statistical similarity analysis methods for plagiarism detection

and our tool called Beagle that implements them. This section

also describes its underlying architecture and how it can be

integrated into an e-learning platform, particularly dotFOLIO.

Section VI presents a set of experiments where the system

is used in an anonymous cohort of engineering students and

analyses the outcomes. Section VII offers some concluding

remarks.

II. BACKGROUND

A number of research projects have studied the motiva-

tions that students have for committing academic dishonesty.

The Joint Information Systems Committee (JISC) in the UK

published a report [8] with recommendations for producing

policies, staff development (on the reasons for plagiarism and

how to design assignments that make plagiarism harder to

achieve), and selecting appropriate software tools to fight it.

The JISC report identified some of the perceived reasons for

plagiarism that provide an insight into preventive solutions to

this problem:

• Widening participation: more students with a wide spread

of backgrounds and interests [9].

• Higher cost of education, accentuated by the reduction

in funding, has forced a larger percentage of students to

work while they study.

• The growth of the Internet.

On a survey of 50, 000 students, a study by the Center of

Academic Integrity [10] showed that 70% of students admit to

some cheating during their studies, and close to 25% admitted

to serious test cheating in the past year.

Several commercial products and Internet services provide

free-text plagiarism detection, as for instance Turnitin [11]

and MyDropBox [12]. In these systems, students’ assignments

are submitted to the remote service where they are compared

with document collections that may include other similar

assignments, the Internet, books, and journal publications. The

strength of these systems is the coverage of the documents

they contain. This is evidenced by their strong partnership

with content vendors such as Pearson Education and Longman.

These products also offer out-of-the-box integration with com-

mercial Learning Management Systems (LMS) and, in some

cases, an API for web services, so that other LMS (e.g. open

source products) or educational systems can be integrated. The

emphasis of these solutions has been on plagiarism detection,

and it appears that all the tools have focused in detecting

similar copies of assignments submitted to the LMS’ drop-

box. The industry behind these systems will probably move

in this direction, where integration is an essential feature in

their offerings.

Anecdotal information shows that there are students and

academics who oppose to the use of systems like Turnitin.

According to [13], a student at McGill University legally

challenged the university partly on the grounds that Turnitin

subsequently adds the paper that the university submits to

its internal repository of documents, providing an economic

benefit to Turnitin without compensation to the student.

Technically, there are several main methods to detecting

plagiarism [14], [15]. They include complete document com-

parison, document fingerprinting or tagging, stylometry, etc.

Behind these methods there is always a concept of similarity

like occurrences of words, fingerprints or tags, or the similarity

between the writing style of an author and the document being

analysed.

The statistical text mining techniques discussed later in

this work allows us to apply statistical similarity measures

that provide us with an indication about the relationship

between two documents. Our contribution provides evidence

for possible approaches towards transforming some of these

systems designed for plagiarism detection into other educa-

tional ventures.

The systems mentioned in this section rely on unknown

techniques that due to commercial strategies are not disclosed,

remaining hidden from the institutions that use them. We

believe that a more productive integration requires an under-

standing about how the system performs internally.

III. ELECTRONIC PORTFOLIOS IN ENGINEERING

EDUCATION

A key aspect in education is reflective learning. Reflec-

tive learning refers to a deeper understanding of the subject

material by drawing connections between learning experi-

ences through critical thinking. This process of introspection

can be supported using an e-learning application called an

E-Portfolio. E-Portfolios are viewed as “personal, life-long

content-management systems for collecting, reflecting on, se-

lecting, and presenting learning outcomes” [16]. E-Portfolio

systems allow learners to archive their learning experiences as

artifacts in a repository [17], and draw connections between

these experiences through reflection. The artifacts can also

be used for personal goals, such as to receive credit for

prior learning, or to demonstrate competencies to potential

employers [18]. E-Portfolios are frequently used with long-

term educational goals, and are said to support life-long

learning experiences.

We developed an E-Portfolio system called dotFOLIO, and

trialled the system within a first year engineering course at

an Australian university. The system was used to replace a

paper-based engineering log book exercise that has been a core

assessment component since the course was first introduced.

The weblog (or blog) application built into dotFOLIO was

considered a suitable online replacement of the paper-based

log book. The blog was used by students to: i) facilitate reflec-

tive learning through the practice of maintaining a journal that

encourages “active intellectual monitoring and evaluation of

[their] own formal learning and professional practice activities,

to examine them for new understandings, and to add to the

individual’s accumulated knowledge and experience” [3], and

ii) promote meaningful collaboration, and sharing of ideas

between students and with a wider audience, by making

postings publicly available.

Students were asked to post in their blog entries that con-

tained their reflections on an engineering topic that changed

each week. Since the postings were public, students were

able to view their peers’ submissions, something not possible

through the paper-based approach. The e-portfolio system

essentially allowed for the possibility of peer-to-peer learn-

ing [19]. This type of collaborative experience in learning

from peers [20] is valuable because students are able to gauge

their responses with the rest of the class, and determine for

themselves whether their submissions were inline with the

expectations of the assessment. Furthermore, students were

able to read the comments written by the tutors for each of

their peers’ submissions. Students therefore not only learn

from feedback provided on their own work, but can learn

from the feedback provided to their peers’ blog entries that

may differ in perspective or opinion from their own.

The students were surveyed for feedback on using dot-

FOLIO for the log book exercise. The results of the survey

were presented in [6], and shows that students were generally

receptive towards using a blog for their log book assessment,

and making their work publicly available. However, there were

a few comments made by students that expressed concern

towards their work being plagiarised by other students. To

confirm whether or not this was a consensus of concern, a

second survey was carried out, this time explicitly asking

students to state whether they agreed or disagreed with the

 10

 15

 20

 25

 30

 35

 40

 45

Strongly AgreeAgreeNeutralDisagreeStrongly Disagree

fr
eq

ue
nc

y

Fig. 1. Students’ response to the statement ‘plagiarism is a concern with
online learning tools’.

statement ’plagiarism is a concern with online learning tools’.

The results for this particular survey question is shown in

Figure 1.

Figure 1 conveys a general consensus that even students

agree that plagiarism is a concern when using online learning

tools. This concern was also shared by the teaching staff,

especially after discovering a plagiarism case by chance, from

using dotFOLIO’s integrated search engine. It was found

that plagiarised blog entries could be identified by searching

for unique words or phrases using the search engine, then

manually reviewing the search results for similar entries. From

a set of 2151 blog entries, only 5 plagiarised documents could

be found using this method. An exhaustive search of the data

set was by no means possible using this cumbersome and

highly inefficient method. It therefore raised the question of

exactly how many plagiarised documents existed within the

data set of blog entries. The resulting challenge was to be able

to identify all plagiarised documents within the data set, and

to be able to achieve this through a text mining application, so

as not to burden the teaching staff with manually performing

an exhaustive search of the data set. We describe our solution

to this problem in the following section.

IV. BEAGLE

Beagle is a document similarity analysis tool used in this

work for plagiarism detection. This section covers our analysis

of the user requirements, a description of the statistical text

mining methods used for the similarity analysis of text docu-

ments, and details on the implementation of the tool. We also

describe the web service-based interface that allows Beagle to

be used by SOAP-enabled applications.

A. Requirements

The success or failure of applications in general, and online

teaching tools in particular, depends on the requirements

imposed by the stakeholders. Text document analysis applied

to plagiarism detection is no different. Teachers should be

able to use these functionalities without having to worry about

issues such as the complexity implicit in a text mining engine,

the scalable management of text documents, access control,

communication protocols, and so forth.

When working online, teachers normally interact with stu-

dents through a LMS or some other applications like dotFO-

LIO. The administrator of these systems should be able to

integrate the tool to the system used by the teachers, providing

educational benefit (according to the teacher’s requirement) but

without increasing their workload.

This integration can be achieved through a conventional

API, which must be designed to allow new and existing appli-

cations to take advantage of the tool. The system administrator

or the person in charge of the integration will at least require:

• Document management: the tool should provide docu-

ment persistence, so that users can send documents that

are stored and maintained automatically by the tool.

• Multilingual: the tool should be capable of analysing text

document written in multiple languages.

• Configurability: the tool should be flexible in the num-

ber of methods and their options used to measure the

similarity of text documents.

The main general system requirements for a comprehensive

plagiarism detection tool are the following:

• Open architecture and interfaces: the system should

have an open architecture and open application interfaces

to enable interaction and integration seamlessly between

the application and the plagiarism detection tool. The

architecture should be able to take advantage of the

open, dynamic nature of the Internet by supporting rapid

integration.

• Interoperability: plagiarism functionalities should be

easily movable from one host to another without affecting

the different applications using them. At the same time,

an application that uses the system should be allowed to

do so from anywhere, without location initiating addi-

tional security concerns.

• Flexibility: the plagiarism platform should be loosely

coupled, so that an application can easily be integrated to

the service without any risk of changes introduced to the

system that might affect the client’s ability to continue

using it.

• Accessibility: plagiarism detection and document sim-

ilarity functionalities provided by the platform should

be specified and published in a universal repository for

search, discovery, and retrieval.

• Sustainability: the platform should be able to grow in

the number of features it offers without affecting the

application currently using it. It should also last, passing

the test of time, and evolving through different technology

trends.

• Scalability: the performance of the tool should not be in-

fluenced by the number of concurrent client applications

simultaneously utilising the system.

• Security: the tool functionalities should be available

for secure use not only within intranets but also on

the Internet. Its adoption by a company or institution,

should not imply the introduction of any security-related

risk, such as opening special ports in the organisation’s

firewall.

B. Approaches to Similarity Analysis

Beagle uses statistical text mining methods for computing

the similarity between text documents. The general approach

is based on first building a global representation of all the doc-

uments using the traditional Vector Space Model (VSM) [21].

This is an algebraic model that represents natural language

documents and queries in a high-dimensional space, where

each dimension of the space corresponds to a word in the

document collection. According to this model, for each of

the documents a feature vector in this space is generated.

This feature vector can also be seen as a point in this space.

The text documents may have a preliminary removal of both

numeric characters or stop-words, so that words that provide

low information content are not taken into account. Besides,

a Porter-type stemming [22] process may be applied to the

text in order to remove the commoner morphological and

inflectional endings from words. For weighting words in this

VSM, we selected the TF/IDF function (term frequency vs
inverse document frequency). The term frequency in the given

document offers a measure of the relevance of the term within

a document. The document frequency is a measure of the

global relevance of the term.

The TF/IDF function takes a collection of documents D
with length |D|, so that D = {d1, . . . , d|D|}. Each document

dj is expressed by a collection of terms with length |dj |, such

as dj = {t1, . . . , t|dj |}. Therefore the TF/IDF value for a

particular term ti in a document dj of D is given by

TF/IDF(ti, dj , D) = TF(ti, d)· log2 IDF(ti, D) =
|ti|

max{TF(t1, dj), . . . ,TF(t|dj |, dj)} · log2

|D|
|D ⊃ ti| ,

(1)

where |ti| is the number of times that the term ti occurs in the

document dj (which is normalised using the maximum term

frequency found in dj), |D| is the number of documents in D,

and |D ⊃ ti| the number of documents where ti appears.

The distance between two documents in the VSM may

be used as an indication of how similar their content is.

These distance functions are applied to the feature vectors that

represent the two documents being compared. The larger the

distance the less similar the two documents are.

The rest of this section describes the distance functions

selected in this work for similarity measurement. All these

distance metrics are well-known in the area of statistical text

mining.

Euclidean distance is given by

euclidean(x, y) =

√√√√ |S|∑
i=0

(w(xi) − w(yi))
2
, (2)

where |S| is the number of dimensions in the VSM (which

corresponds to the number of features in each feature vector)

and w is the weight of a particular feature in the feature vector.

The Manhattan distance measure results in the sum of the

lengths of the projections of the line segment between the

points onto the coordinate axes. This function is also known

as City Block distance, because it is the shortest distance a

car would need to drive in a city organised in square blocks.

The measure is defined as

manhattan(x, y) =
|S|∑
i=0

|w(xi) − w(yi)| (3)

The Hamming distance consists of the number of different

elements in two strings of equal length. This function is

very well known in the field of Information Theory where

it represents the number of substitutions (or errors) required

to change one string into another. It is expressed by

hamming(x, y) =
|S|∑
i=1

δ(xi − yi), (4)

where the predicate function δ is defined by

δ(xi, yi) =

{
1 if xi = yi

0 otherwise
(5)

The Minkowski distance is a generalisation of the distance

between two points in the Euclidean space. This measure is

defined by

minkowski(x, y) =

⎛
⎝ |S|∑

i=1

|xi − yi|λ
⎞
⎠

1
λ

, (6)

for 1 ≤ λ < ∞. It is interesting to note that when λ = 1, this

function happens to be identical to the Manhattan distance

defined in Equation 3. When λ = 2 it is equivalent to the

Euclidean distance detailed in Equation 2. Another special case

is when λ = ∞, which results in

minkowski(x, y) = max
i

|xi − yi| (7)

A weakness of the standard Euclidean, Manhattan, and

Minkowsky distance measures is that if one of the features

has a relatively large range, then it can overpower the other

features. To prevent this, the data is often normalised. A

simple way of normalising the similarity measurement is

by previously normalising the feature vectors. This can be

expressed by the following equation

xi =
xi − μi

σi
, (8)

where each feature xi in feature vector x is modified by

applying its variance and mean. However, feature vectors

with very small absolute values will be scaled to have the

same variation as feature vectors with initially very large

values, which is not desirable in many scenarios. On the

other hand, the similarity measure using the Hamming distance

does not suffer from these issues and obtaining a normalised

measurement is straightforward, being defined by

ˆhamming(x, y) =
hamming(x, y)

|S| (9)

C. Implementation

The implementation of the similarity measurement module

is based on our own object-oriented text mining application

framework called Pimiento [23]. This software component

was written using Java Standard Edition (J2SE) and aimed at

providing developers with the primary benefits of application

frameworks, such as modularity, reusability, extensibility, and

inversion of control [24]. Pimiento has an extensible com-

ponent for each of the text mining domains that it currently

tackles: categorisation, language identification, summarisation,

clustering, and similarity analysis. It offers numerous features

to suit both a production environment where performance is

crucial as well as a research context where highly configurable

experiments must be executed. It can be used in production

systems due to its high scalability based on a cache system that

allows for precise control of the amount of memory allocated,

and its performance efficiency thanks to a carefully tuned-

up code-base. We used the Pimiento’s API to generate the

documents’ VSM framework and the calculation of similarity

between document pairs.

Another important implementation aspect of Beagle is re-

garding the storage infrastructure for the text documents. One

of the main challenges that text document repositories face

is how to adequately scale to large amounts of information

as well as large numbers of users. In most situations, a

distributed system will be required to handle the total amount

of information in multiple physical storage locations, each

one containing many storage objects, and yet treat this set of

systems as a single logical unit. This functionality is achieved

through our own document repository called Lenteja. Although

Lenteja is an independent software component that can be

used in other applications and systems, it is one of the key

components of Beagle and was developed with the above

scenario in mind.

The repository can use two different types of databases to

store the unstructured information: a relational database or

a document-oriented (i.e. XML) database. If the relational

database is chosen, any DBMS with an appropriate JDBC

driver can be used, although at this moment we primarily

use PostgreSQL – an open source relational database system.

In the case of XML databases, we currently support eXist,

an open source native XML database. Lenteja can store

documents using two different formats: plain text and the

OASIS OpenDocument specification. The latter is useful when

the input document to be stored comes in a certain format

and it has to be imported into a common form while keeping

as much of the original format as possible. The current im-

plementation is capable of importing the following document

dotFOLIO Beagle Pimiento Lenteja

login()

session id

addDocument()
addDocument()

connect()

connection id

addDocument()
addDocument()

compareTwoDocument()

success

success

success

success

retrieveDocument()

document

retrieveDocument()

document

measureSimilarity()

measurement
measurement

logout()
destroy()

disconnect()

success
success

create()

Fig. 2. This sequence diagram shows the iteration among the different software components including dotFOLIO, Beagle, Pimiento, and Lenteja.

types: PDF, RTF, HTML, Microsoft Word, OpenOffice 1.x,

and OpenOffice 2.x.

D. Web Service Interface

Beagle uses a web service to offer its functionality to

remote and local applications. Choosing web services as the

interoperability mechanism is due to the inherent properties of

this technology such as: i) its interface contract is platform-

independent, ii) it can be dynamically located and invoked, and

iii) is self-contained, so that it maintains its own state. Web

services play a major role in the Service-Oriented Architecture

(SOA). They are built over well-known platform-independent

protocols, including HTTP, XML, UDDI, WSDL, and SOAP.

Thanks to these standards, web services are dynamically

discoverable and invocable. XML provides a language for

platform-independent interface contracts and HTTP provides

the interoperable transport mechanism. A notable aspect is that

due to web services being self-describing, client applications

do not need to know anything about the service except for

the format and content of request and response messages. The

definition of the message format travels with the message.

No external metadata repositories or code generation tools are

required. Indeed, the discovery of web services is achieved

through standard technologies like UDDI and WSDL.

The web service was developed using Apache Axis, an open

source implementation of the W3C SOAP in Java. The Beagle

web service interface offers the functionality requirements

described in Section IV-A.

• login: a new client connects and an unique session

identification value is returned. In case of error, null is

returned instead. This method implies Beagle connecting

to the document repository Lenteja and creating a new

instance of Pimiento.

• logout: a client ends a current session. In case of error,

false is returned or true otherwise. Internally, Beagle

disconnects from Lenteja and destroys the instance of

Pimiento previously allocated.

• addDocument: a current client stores a new document

into the document repository. The document is identified

by a name chosen by the client. The document content

has to be provided as plain text by the client. In case of

success, true is returned by the web service, or false
in case of error.

• deleteDocument: a current client removes a docu-

ment from the document repository. The document is

identified by its name. In case of success, true is

returned by the web service, or false in case of error.

• retrieveDocument: a current client retrieves a doc-

ument’s content from the document repository. The doc-

ument is identified by its name. In case of success, true
is returned by the web service, or false in case of error.

• compareTwoDocuments: the similarity of two docu-

ments stored in the repository is measured and returned

to the client. The two documents are identified by their

names. Internally, Beagle uses Pimiento to create the

VSM that corresponds to all the documents, so this

method can take some additional time when executed for

the first time.

• compareAllDocuments: one document is compared

with all the other documents in the repository. The

document is identified by its name. The names of those

documents with a similarity above a certain threshold

specified by the client are compiled and returned to

the client. In case of error, null is returned instead.

Internally, Beagle uses Pimiento to create the VSM that

corresponds to all the documents, so this method can take

some additional time when executed for the first time.

• compareSomeDocuments: one document is com-

pared with some documents in the repository. The docu-

ments are identified by their names. The names of those

documents with a similarity above a certain threshold

specified by the client are compiled and returned to

the client. In case of error, null is returned instead.

Internally, Beagle uses Pimiento to create the VSM that

corresponds to all the documents, so this method can take

some additional time when executed for the first time.

• setLanguage: a current client specifies the language

for the documents. This method will affect posterior sim-

ilarity measurement when using the comparison methods.

The languages supported at this moment are English,

Spanish, French, German, and Basque. For other lan-

guages, a neutral feature can be used. In case of success,

true is returned by the web service, or false in

case of error. After executing this method, Beagle might

have to recreate the VSM, hence taking some additional

processing time.

• setProcessing: a current client sets the configuration

for processing documents. This includes whether the

words will be stemmed or not, if numerical terms will be

taken into account or not, the term weighting method, and

the minimum number of terms (as very small documents

can easily be very similar to others). In case of success,

true is returned by the web service, or false in

case of error. After executing this method, Beagle might

have to recreate the VSM, hence taking some additional

processing time.

V. BEAGLE AND DOTFOLIO INTEGRATION

Figure 2 is a sequence diagram that shows the general

behaviour of the system through time as the four main software

components involved in this work (i.e. dotFOLIO, Beagle,

Pimiento, and Lenteja) exchange messages to control the

execution flow.

Beagle is useful for calculating the pairwise similarity

measurements for a set of documents. As we will show in

the following section, the higher the similarity measurement

is, the greater the probability that one of the two documents

is a plagiarised work of the other. The similarity measurement

alone is not capable of determining the plagiarised document

from a pair of similar documents. Further information must

be extracted from dotFOLIO so that the system can provide

a better recommendation to the teaching staff as to which

documents are plagiarised versions of the originals.

For dotFOLIO and Beagle to distinguish between the origi-

nal document and the plagiarised document from a pair of sim-

ilar documents, the integrated systems use the time-stamps of

the blog entries to determine which entry was posted first. The

time-stamps are useful in determining which of the documents

from a pair of similar documents is the original, assuming

that the document with the earliest time-stamp is the original.

Furthermore, dotFOLIO keeps a history of which users have

viewed a specific blog entry. This means that we can verify

that a plagiarised blog entry was in fact influenced by another

blog entry, in the case where the author of the plagiarised

blog entry was on record of having viewed the original. By

knowing that two documents have been determined as similar

by Beagle, we are able to use this result along with the time-

stamps and viewing history from dotFOLIO to identify the

plagiarised document from the original.

VI. EXPERIMENTAL RESULTS

The definition of plagiarism is somehow embedded in

the configuration of the similarity threshold. The number of

documents that would be flagged as copied would depend

on this threshold. If the threshold is too low, it could mean

that those somewhat similar postings are actually the result of

students’ collaboration (a valuable learning outcome) or the

fact that the topic requires a very limited vocabulary, so most

correct postings would have very similar representations in the

Vector Space Model.

If we take the concept of thresholds one step further, we

can create categories, each of them defined by the interval

or band that lies between two thresholds. An example can be

seen in Figure 4. These categories could be application specific

descriptions of what the teacher believes is happening in the

classroom/online activity. This new point of view supports a

fairer diagnostic and might provide better information to the

teacher in order to make a prognosis of the different teaching

strategies to follow.

In order to estimate how correct Beagle is in detecting

possible cases of plagiarism as defined by the teacher, we

apply a precision measure, represented by π. It indicates the

positive predictive value or, in other words, the probability that

a document categorised as plagiarised actually was plagiarised.

This measure is defined by

π =
TP

TP + FP
(10)

where TP indicates the number of true positives, or how many

documents were correctly classified as plagiarised. Accord-

ingly, FP indicates the number of false positives.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

. d
oc

um
en

t p
ai

rs

similarity

(a) Overall distribution.

 0

 2

 4

 6

 8

 10

 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

. d
oc

um
en

t p
ai

rs

similarity

(b) Detailed distribution for similarities over 0.4.

Fig. 3. Distributions of similarity mesurements applied to all possible document pairs.

To calculate the corresponding averaged estimates for π
there are two different possibilities: micro-averaging and

macro-averaging. Equation 11 defines the micro-average mea-

sure πμ as the total sum of true positives over the total sum

of true positives plus false positives. Equation 12 defines the

macro-average measure πM as the sum total of individual

precision values over the total number of individual precision

values calculated. The macro-average weights equally all the

similarity bands found in Table I, regardless of how many

findings each contains. The micro-average weights equally all

the findings, hence favouring those bands containing more

findings.

πμ =
TP

TP + FP
=

|R|∑
i=1

TPi

|R|∑
i=1

(TPi + FPi)

(11)

πM =

|R|∑
i=1

πi

|R| , (12)

R is the set of similarity sampling bands and |R|
the number of them. For example, in Table I R =
{[0.4, 0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), [0.9, 1)}
and |R| = 6.

Figure 4 conveys the level of precision for each similarity

measurement band using the normalised Hamming distance

measure describes by Equation 9. We chose this particular dis-

tance measure for providing values between 0 and 1, where a

similarity of 0 indicates two dissimilar documents while 1 cor-

responds to two identical ones. This figure clearly shows that

precision increases as the bands of similarity measurements

increase. This is further clarified by the increasing micro-

averaging and macro-averaging precision values as similarity

increases in Table I. The results show that Beagle can be used

efficiently to detect plagiarism when a similarity threshold is

set at a level so that precision is reasonably high. In the case

of Figure 4, a suitable similarity threshold could be set at

0.6, indicating that documents with a similarity measurement

greater than 0.6 have a greater chance of being identified by

an expert as plagiarised work.

When using a multi-threshold classification, Figure 3(b)

could be used to define similarity bands. With the current

experimental data, the following similarity bands and corre-

sponding observations were established:

1) unique for documents that have less than 0.05 (which

could indicate either original or off-topic work),

2) on topic for those below 0.2 (the majority of the post-

ings),

3) collaborative for those between 0.2 and 0.4,

4) highly collaborative for those between 0.5 and 0.6, and

5) potential plagiarism for those above 0.6.

This method of classifying relationships between documents

could be very valuable in the diagnosis of what is happening

in the virtual classroom. Proper evaluations would require time

consuming validations across all documents in the collection,

which is something that falls out of this research project. If

the classification is embedded in a particular system (e.g.

dotFOLIO), teachers can validate this classification while

supervising the students’ contributions.

Similarity TP FP π πμ πM

0.4 to 0.5 6 35 0.15 0.15 0.15

0.5 to 0.6 8 9 0.47 0.24 0.31

0.6 to 0.7 6 0 1.00 0.31 0.54

0.7 to 0.8 3 2 0.60 0.33 0.55

0.8 to 0.9 6 1 0.86 0.38 0.61

0.9 to 1.0 10 0 1.00 0.45 0.68

TABLE I

TABLE OF PRECISION RESULTS FOR BANDS OF SIMILARITY

MEASUREMENTS.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.9 to 1.00.8 to 0.90.7 to 0.80.6 to 0.70.5 to 0.60.4 to 0.5

fr
eq

ue
nc

y

similarity range

false positives
true positives

Fig. 4. Frequency of True Positives with respect to False Negatives by
similarity range.

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12 14 16 18 20 22

nu
m

. d
oc

um
en

ts

time (s)

Hamming
Euclidean

Manhattan
Minkowski

Fig. 5. This graphs shows the execution time that takes to pairwise compare
all the documents in a group when applying several similarity measures.

The choice of a distance measure among the several avail-

able has an impact on both the precision and the execu-

tion performance when analysing document similarities. The

execution performance measures indicate the computational

requirements that a particular measure impose on a system.

This may be important in circumstances where it is crucial

to know if the measures and the algorithms used are feasible

for a particular real-world application. Since it is not within

the scope of this project to manually tag all documents as

plagiarised or not, we limited our experiments to only one

distance measure, as mentioned above.

Figure 5 shows the time required for computing each of

the four existing distance measures on each possible pair of

documents in a collection with size indicated in the y axis. For

example, a collection of n documents would require n(n−1)/2
pairwise comparisons. This measure can help to find out how

much time it would take to compare a complete set of postings

in a class.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

nu
m

. d
oc

um
en

ts

time (s)

Hamming
Euclidean

Manhattan
Minkowski

Fig. 6. This graph shows the execution time that takes to compare a growing
number of documents with all the existing documents when applying several
similarity measures.

Figure 6 shows the time it takes to compare a subset of doc-

uments with the complete set that contains all the documents

by using the four available distance measures. This comparison

would be important in case we need to compare a number of

documents with a repository that contains documents from

previous years or acquired through other means (e.g. the

Internet or encyclopaedias).

VII. CONCLUSION

When teachers and students communicate online, they write

text that can be efficiently processed using statistical text

mining methods. The Vector Space Model provides for a well-

known mathematical framework to describe distance-based

similarities. This model can be implemented in tools that

provide easy integration capabilities.

In this article, we have shown that plagiarism detection

is one of the interesting possibilities in which this model

can be used. We have evaluated the system on an electronic

portfolio application currently being used in a real first year

engineering course. The results require the tuning of thresholds

for the particular teaching context and group of students,

then providing fairly good levels of precision for a relatively

large cohort of students. The precision metrics show that the

collusion approach is good in detecting possible plagiarism

cases. The false positives still exist so the system should only

be used as a support tool for academics and not for enforcing

disciplinary actions.

The performance of the system have been evaluated, show-

ing that it is feasible to apply this technique to a large number

of documents. The execution time on a conventional desktop

computer of any of the four available distance measures

require less than 20 seconds to process the approximate 2000
postings, which means around 0.01 seconds for each new

submission posted.

We have also introduced a novel multi-threshold classifica-

tion approach that allows teachers to have estimates about the

relationship between documents and produce diagnostic infor-

mation about the level of collaboration, potential plagiarism

and other educational goals.

REFERENCES

[1] M. Scardamalia and C. Bereiter, “Computer Support for Knowledge-
Building Communities,” The Journal of the Learning Sciences, vol. 3,
pp. 265–283, 2004.

[2] D. Laurillard, Rethinking University Teaching: A conversational frame-
work for the effective use of learning technologies. London: Routledge
Farmer, 2002.

[3] S. Palmer, “Evaluation of an On-Line Reflective Journal in
Engineering Education,” Computer Applications In Engineering
Education, vol. 12, no. 4, pp. 209–214, 2004. [Online].
Available: http://www.research.deakin.edu.au/performance/pubs/reports/
database/dynamic/output/person/person.php?person code=palmest

[4] C. Lindahl and E. Blount, “Weblogs: Simplifying Web Publishing,”
IEEE Computer, vol. 36, no. 11, pp. 114–116, November 2003.
[Online]. Available: http://csdl2.computer.org/persagen/DLAbsToc.
jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/11/rytoc.
xml&DOI=10.1109/MC.2003.1244542

[5] R. A. Ellis and R. R. Moore, “Learning through benchmarking: Develop-
ing a relational, prospective approach to benchmarking ICT in learning
and teaching,” Higher Education, no. 51, pp. 351–371, 2006.

[6] N. Carroll and L. Markauskaite, “E-Portfolios and Blogs: Online Tools
for Giving Young Engineers a Voice,” in 7th International Conference on
Information Technology Based Higher Education and Training. IEEE,
July 2006.

[7] S. Downes, “Educational Blogging,” Educause Review, vol. 39,
no. 5, pp. 14–26, September 2004. [Online]. Available: http:
//www.educause.edu/pub/er/erm04/erm0450.asp?bhcp=1

[8] G. Chester, “Final Report on the JISC Plagiarism Detection Project
Final Report on the JISC Electronic Plagiarism Detection Project,”
Joint Information Systems Committee, Tech. Rep., 2001. [Online].
Available: http://www.jisc.ac.uk/index.cfm?name=plagiarism detection

[9] B. Leask, “Plagiarism, cultural diversity and metaphor: Implications
for academic staff development,” Assessment and Evaluation in Higher
Education, vol. 31, no. 2, pp. 183–199, 2006.

[10] D. M. L. Trevino and K. Butterfield, “Academic Integrity in Honor
Code and Non-Honor Code Environments: A Qualitative Investigaton,”
Journal of Higher Education, vol. 70, no. 2, 1999.

[11] Turnitin. [Online]. Available: http://www.turnitin.com/
[12] MyDropBox, “Integration and API.” [Online]. Available: http://www.

mydropbox.com/services/integration.php
[13] C. J. Neill and G. Shanmuganthan, “A web-enabled plagiarism detection

tool,” IEEE IT professional, no. 5, pp. 19–23, September 2004.
[14] G. R. S. Weir, M. A. Gordon, and G. MacGregor, “Work in Progress

– Technology in plagiarism detection and management,” in 34th
ASEE/IEEE Frontiers in Education Conference, Savannah, GA, 2004,
pp. 18–19.

[15] S. Gruner and N. S., “Tool Support for Plagiarism Detection in Text
Documents,” in 2005 ACM Symposium on Applied Computing, 2005,
pp. 777–781.

[16] A. Jafari, “The ”Sticky” ePortfolio System: Tackling Challenges and
Identifying Attributes,” EDUCAUSE Review, pp. 38–48, 2004. [Online].
Available: http://www.educause.edu/apps/er/erm04/erm0442.asp

[17] H. C. Barrett, “ICT Support for Electronic Portfolios and Alternative
Assessment: The State of the Art,” in Proceedings of World Conference
on Computers in Education (WCCE2001), July 2001. [Online].
Available: http://www.electronicportfolios.org/portfolios/wcce2001.pdf

[18] J. Ittelson, “Building an E-dentity for Each Student,” EDUCAUSE
Quarterly Articles, vol. 24, no. 4, pp. 43–45, 2001. [Online]. Available:
http://www.educause.edu/asp/doclib/abstract.asp?ID=EQM0147

[19] P. Jokela, “Peer-to-Peer Learning - an Ultimate Form of e-Learning,”
in World Conference on E-Learning in Corporate, Government, Health-
care, and Higher Education., vol. 2003. AACE, 2003, pp. 1624–1631.

[20] J. Sumner and K. Dewar, “Peer-to-Peer eLearning and the team effect
on course completion,” in International Conference on Computers in
Education, vol. 1. IEEE, December 2002, pp. 369–370.

[21] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Reading, Pennsylvania:
Addison-Wesley, 1989.

[22] M. Porter, “An algorithm for suffix stripping,” Program, vol. 14(3), pp.
130–137, 1980.

[23] J. J. Garcı́a Adeva and R. A. Calvo, “Mining Text with Pimiento,” IEEE
Internet Computing, vol. 10, no. 4, 2006.

[24] M. Fayad and D. C. Schmidt, “Object-Oriented Application Frame-
works,” Communications of the ACM, vol. 40, no. 10, pp. 32–38, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

