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1 Introduction

Today, the term extended enterprise (EE) is typically meant to designate any
collection of organizations sharing a common set of goals. In this broad sense,
an enterprise can be a whole corporation, a government organization, or a net-
work of geographically distributed entities. EE applications support digitaliza-
tion of traditional business processes, adding new processes enabled by e-business
technologies (e.g. large scale Customer Relationship Management). Often, they
span company boundaries, describing a network of relationships between not
only a company and its employees, but also partners, customers, suppliers, and
markets. In this scenario, Business Process Modeling (BPM) techniques are be-
coming increasingly important. Less than a decade ago, BPM was known as
workflow design and was aimed at describing human-based processes within a
corporate department. Today, BPM is used to design the orchestration mech-
anisms driving the interaction of complex systems, including communication
with processes defined and executed by third parties according to well-defined
protocols. Also, it can be used to check compatibility and consistency of the
individual business processes that are defined by collaborating business entities.
A large number of methodologies, languages, and software tools have been pro-
posed to support digital BPM; nonetheless, much work remains to be done for
assessing a business process model validity with respect to an existing organiza-
tional structure or w.r.t. external constraints, like the ones imposed by security
compliance regulations. In particular, Web-based business coalitions and other
inter-organizational transactions pose a number of research problems. OMG’s
Model Driven Architecture (MDA) [ABmann et al., 2005] provides a framework
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for representing processes at different levels of abstraction. In this paper we rely
on a MDA-driven notion of business process model, constituted by three distinct
components:

— A static domain model, including the domain entities (actors, resources, etc.);
— a workflow model, providing a specification of process activities;
— a value model, describing the value exchange between parties.

In the modeling of static models, we shall focus on expressive formalisms con-
stituted by controlled fragments of natural languages, introducing their transla-
tion into logics-based static domain models, and describing their relations with
Semantic Web (SW) metadata formats [W3C]. In fact, the latter allow to as-
sign a specific semantics to entities in the domain model; particularly, we are
interested in the entities that, for a number of reasons, may result in under-
specified descriptions. This distinction will prove of foremost importance with
regard to the derivation of implicit knowledge. The static model can also be
used to provide a comprehensive description of the entities that interact with
each other in the workflow model and the resources that are exchanged during
workflow execution. Visual languages are typically used to produce business pro-
cess descriptions that regulate the interaction between the different actors in the
EE scenario. Logic-based formalismsmodels can be easily derived from business
process descriptions and can therefore be integrated with the static model for
checking consistency and computing a wide range of business metrics that take
into account dynamic aspects of the business environment. Finally, although the
process model represents the main source of information driving the actual im-
plementation of business activities, it may not be the focus for business analysts
that are required to evaluate the net outcome of transactions in terms of the
value exchange between the interacting parties. Consequently, the overall model
will be completed by providing the value model underlying business processes.
As for process models, these are also typically expressed by means of visual lan-
guages and can be translated into logic-based to obtain data structures that are
amenable to automated processing.

The Chapter is structured as follows: in Section 2, we introduce rule-based
business modeling and its translation into a logic-based formalism. Section
addresses two distinct semantics that can be applied to the knowledge base
that is derived from business rules, highlighting the need for integration of both
paradigms into a hybrid deduction system. Furthermore, Section [Z4] introduces
the issues related with the different modal interpretations of business rules that
are required. Section [3] provides an overview of formalisms for modeling process
workflows and then focuses on a practical example of BPMN diagram describing
the orchestration of independent processes. Section ] completes the picture with
a value model to be associated with the entities that have been introduced in the
static model and have been instantiated in the workflow model in order to define
processes. Section Bl is addressing the relations between the three models that
have been introduced by indicating some of the possible cross-checking mech-
anisms that can bind the distinct layers in the actual implementation. Finally,
Section [6] draws the conclusions and highlights the main open issues.
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2 Rule-Based Structural Description

This Section introduces the business rules (BR) approach to business domain
modeling [Ross, 2003]. BR allows for a thorough specification of the entities
that populate a specific state of affairs and the mutual relations between them.
The high expressivity that is required by rules has led business analysts to-
ward the adoption of natural language as the encoding formalism for BR. This
strategy clearly fulfils the needs of knowledge sharing between humans, but
inevitably complicates any sort of automated processing on rules. A tradeoff
between expressivity and formal specification of statements is constituted by
controlled natural languages and, among them, controlled English (CE): these
formalizations are derived from natural languages by constraining the admis-
sible sentential forms to a subset that is both unambiguous and expressive. A
widely acknowledged example of CE is the Attempto Controlled English (ACE)
[Fuchs et al., 1999], a general-purpose controlled natural language supporting
specification of complex data structures, such as ontologies. As an example, a
simple rule in ACE that may contribute to the definition of a business domain
is the following:

A customer provides a credit card to a retailer. (1)

General-purpose controlled languages can be provided with a formal (e.g., logics-
based) semantics; however, they fall short of being capable to model all the as-
pects of a business domain. With regard to the expressive power required by
BR, rule-based languages may need to cover higher order logics and also, as
explained in Section [Z4] may specify the modal interpretation to be associ-
ated with a statement. Also, as we discussed in Section [3] the static description
provided by BR needs to integrate with process descriptions and, possibly, orig-
inate object-oriented data structures that software developers may use to flesh
out applications. The recognition of these requirements was a major driver of
OMG’s Semantics of Business Vocabulary and Business Rules (SBVR) proposal
[OMG, 2006], aimed at specifying a business semantics definition layer on top
of its software-oriented layers. In the OMG vision, BR can then be integrated
with the development process represented by OMG’s own Model Driven Ar-
chitecture (MDA) and, consequently, extend the applicability of object-oriented
modeling not only to software product development but also to business pro-
cess modeling and maintenance. SBVR provides business analysts with a very
general controlled language, whose syntax visually separates the different to-
kens in a sentence (nouns, verbs, reserved keywords) with different styles and
colordl. As an example, the rule in () corresponds to the following SBVR fact

type.
Obligaton: a customer provides a credit card to a retailer (2)

! Here we shall not deal with color markup of rules, which is primarily intended to
ease the reading of a large rule corpus.
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For the sake of clarity, in the remainder of this Section we are not going to stick
to any specific Controlled English (CE) formalism for expressing rules. However,
we stress the importance of carefully evaluating the expressivity of candidate CE
languages, prior to encoding business intelligence into one of these formalisms,
because it may not necessarily meet the requirements of more comprehensive
frameworks for corporate data reuse. ACE and SBVR represent only two of the
many available CE formalisms, which may vary according to i) the syntactic
restrictions that are applied to the corresponding natural language, ii) the frag-
ment of first-order logic (FOL) that can be conveyed by statements, and i) the
applicability of automated reasoning. The reader can refer to [CLT] for a more
complete survey of controlled natural language formalisms. Here, we investigate
the feasibility of automated deductions over business rules, particularly in the
EE scenario where independent business entities are required to integrate.

2.1 Formal Grounding of Business Rules

By using CE formalisms for expressing BR, it is possible to apply translation
mechanisms that lead to a univocal logic formulation of statements. As an exam-
ple, the grounding in formal logic provided by ACE is constituted by Discourse
Representation Structures (DRS) [Fuchs and Schwertel, 2003] that represent a
subset of FOL and provide a pathway to executable logic formulations B. More
importantly, an Attempto Parsing Engine (APE) is available either as a stan-
dard Web interface and as a webservice, so that the engine can be remotely
queried by programming logic developed by third parties. As an example, the
DRS corresponding to the simple rule in () is the following:

[A, B,C, D]

object(A, atomic, customer, person, cardinality, count unit,eq,1) — 1
object(B, atomic, credit card, object, cardinality, count unit,eq,1) — 1
object(C, atomic, retailer, person, cardinality, count unit,eq,1) — 1

predicate(D, unspeci fied, provide to, A, B,C) — 1

APE also provides a mapping between a subset of ACE and the OWL DL on-
tology language [W3C, 2004]; it can therefore take advantage of DL reason-
ers [Haarslev and Moller, 2001}, [Parsia et al., 2003] to infer implied knowledge.
As will be shown in the following of this Section, DL represents only a small
fragment of FOL; particularly, it is also limited to expressing binary relations
between entities. As a consequence of this, even the simple ternary relation bind-
ing customers, resellers, and credit cards in ([{Il) cannot be expressed without
“objectifying” the relation by means of a newly introduced concept definition.
This amounts to expressing predicate D in the corresponding DRS as a concept

2 Recall that full FOL is proven to be undecidable; therefore, deriving the DRS corre-
sponding to an ACE statement does not imply that such logic formulation can also
be executed by programs.
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definition that is the domain of three binary relations whose ranges (i.e., the
categories of entities the relations map to) are concepts customer, reseller, and
credit card, respectively. For a more traditional processing of ACE rules, DRS
can also be translated into RuleML [Boley et al., 2001] to be processed by rule
engines, such as the Jena framework [Jenal. Note that, in this case, the term
“rule” is not indicating a BR, but instead the Horn fragment of FOL which guar-
antees a sound and complete reasoning on rules by applying either forward- or
backward-chaining derivations. One of the main challenges of drawing inferences
based on a BR model is the capability of applying the so-called hybrid reasoning
on the knowledge base. The distinct inference paradigms which are associated,
respectively, with OWL DL reasoning and Horn rules execution need to be inte-
grated. It is not possible to adopt a single inference technique, because the enti-
ties in the business domain may have a different semantics associated with them.
Information under full control of the stakeholder (e.g., a company) writing the
model (e.g., the notion of employee) can be modeled as in traditional database
design. In this case, BR simply provide a lingua franca by means of which busi-
ness analysts and software developers can more easily translate company data
requirements into real-world implementations. Other knowledge, however, needs
to be introduced in order to compete and cooperate in the EE scenario (e.g., the
notion of competitor); this knowledge is not under the modeler’s full control, and
may therefore be incomplete@. We indicate by closed-world assumption (CWA)
the approach implemented by applications that only process complete data un-
der the full control of their owner. In this case, failing to retrieve answers to a
query (say, ‘retrieve the credit card data associated with customer John Smith’)
automatically implies that such data do not exist. Consequently, customer John
Smith constitutes a valid answer to the query ‘retrieve customers that do not
have a credit card associated with them’ because incomplete knowledge amounts
to false (i.e., negative) knowledge. This notion of negation (generally referred
to as negation as failure) leads to the non-monotonic reasoning that provides
the correct interpretation of closed systems. In the context of logic inference,
the term ‘non-monotonic’ essentially means that conclusions (e.g., that John
Smith is a valid answer to the previously defined query) may be contradicted
by adding information to the knowledge base (e.g., the assertion John Smith pro-
vides VISA-041). On the contrary, we indicate by open-world assumption (OWA)
the monotonic approach to inference that should be applied to heterogeneous
data sources, such as those collected by individual systems in the EE scenario,
and also (according to business analysts) to proprietary descriptions expressed
by business rules, wherever not explicitly stated otherwise. OWA represents a
fundamental requirement for Semantic Web (SW) languages [W3C] and, conse-
quently, SW applications may also process data structures expressed by BR that
cannot be considered as complete knowledge.

3 This kind of incomplete descriptions may also express proprietary entities from
within the business model. In fact, the complexity of business descriptions that
need to be expressed by BR may not make it possible to exhaustively express the
business domain.
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2.2 Interpreting Entities in the Business Domain

The semantics of BR is typically described by providing a mapping from the
rules syntax to some well-known logic formalism. Three (potentially conflicting)
basic requirements of such formal models have been identified:

1. High expressive power. A basic requirement for the underlying logic is to
match the high expressive power of the specific CE without further con-
straining the sentential forms that can be interpreted. Business analysts are
accustomed to using plain English and would not accept any too severe lim-
itation to the expressive power of the modeling language.

2. Tractability. In order to automate rule checking and execution, the underly-
ing logics’s expressive power has to be carefully balanced against tractability.

3. Non-falsifiability. BR semantics should rely on monotonic reasoning, i.e. on
inference paradigms whose conclusions cannot be contradicted by simply
adding new knowledge to the system.

These three requirements have been emphasized by business analysts and re-
searchers as guidelines toward finding the correct logical interpretation of busi-
ness models, but are NOT satisfied by current BR modeling. Furthermore, as
anticipated above, managing this category of descriptions in the EE may pose
novel requirements. Specifically, aggregating heterogeneous data sources that are
not under full control of each system participating in the EE demands more at-
tention when data is evaluated. The first set of entities that will be described
belong to this category of open descriptions and we will show that only some of
them can lead to automated deductions in such a way that their full semantics
is preserved. The business rules that follow are meant to describe a generic prod-
uct that is made available in a market as a consequence of cooperation among
manufacturers, distributors, and resellers. These entities are to be considered
external to the system that will process the information; you may suppose that
a company is doing this in order to monitor markets that are interested by their
business. Consequently, we are going to consider each of these entities as open;
that is, incomplete with regard to their formal definition and also with regard
to existing instance data associated with them. As an example, consider the
following business rules:

a product is produced by exactly one manufacturer (3)
a product is distributed by at least one distributor (4)
a product is reselled by at least one reseller (5)

Clearly, the rules above define constraints that instances of concept product must
satisfy. Furthermore, they refer to attributes of a product instance (produced by,
distributed by, and reselled by) that relate product instances with (possibly com-
plex) data structures expressing manufacturers, distributors, and resellers. They
may also indicate datatype attributes, such as price, weight, etc., that are re-
quired by metrics based on numeric calculations. Considering state of the art
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paradigms for data storage, constraints (3)-(&l) cannot take the form of manda-
tory attributes in a relational schema (or more expressive trigger-based con-
straints) because we assume that instance data may be incomplete, e.g. both
the following tuples do indicate, in the knowledge base, valid product instances:

product manufacturer distributor reseller
ITEM-01 COMP-01 - -
ITEM-02 - - SHOP-01

On the contrary, rules [B)-(E) can be easily translated into the following FOL
statementd:

Product(x) — Jly.Manufacturer(y) A producedBy(z, y) (6)
Product(x) — Jy.Distributor(y) A distributedBy(x, y) (7)
Product(x) — Jy.Reseller(y) A reselledBy(z, y) (8)

Unfortunately, existing FOL reasoners cannot process statements (@)-(8) because
they do not comply with the Horn fragment: Specifically, all variables in a Horn
rule consequent (head) must match variables in the rule antecedent (body), while
variable y in statements ({B)-(8]) is not bound to any variable in the rule body.
When applying reasoning, enforcing these rules clearly amount to asserting the
existence of hypothetical class instances related with a product instance by the
three properties. Because of the CWA approach of rule reasoners, the semantics
of ([@)-(@) cannot be expressed.

Instead, languages that are specifically designed for modeling incomplete data
sources (like the ones used in the SW) can express these constraints without
requiring instances of concept Product to actually refer to instances of concepts
Manufacturer, Distributor, and Reseller:

Product C = 1 producedBy.Manufacturer
Product C > 1 distributedBy.Distributor
Product C > 1 reselledBy.Reseller

For the sake of clarity, here we express OWL structures by means of the corre-
sponding Description Logics (DL) syntax. However, there is a one-to-one corre-
spondence between OWL constructs and DL assertiond]. Inference procedures
that are associated with SW languages allow to evaluate data structures ac-
cording to the OWA, while querying a (structurally equivalent) relational data
model may not derive all possible conclusions. In fact, as for the Horn fragment
of FOL, databases are bound to consider only existing data instances when ex-
ecuting queries. Consider for example the following query:

retrieve all instances that have a reseller associated with them

4 In knowledge representation (KR), concept definitions are typically indicated by a
leading uppercase letter; instead, property definitions start with a lowercase letter.

5 The OWL Lite and OWL DL sub-languages are isomorphic to the SHZF (D) and
SHOZIN (D) DLs [Baader et al., 2003], respectively, where (D) indicates support for
XML Schema datatypes.
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Clearly, a database query would return ITEM-02 as the only individual satisfy-
ing the query because no reseller is associated with the other tuple. Instead, DL
reasoning paradigms may derive that, because of rule (@), ITEM-01 must have
a reseller, even if its identity is not known to the system at the moment. Con-
sequently, the relational data model grounding mainstream dataware housing
cannot be as expressive as SW formalisms when modeling data structures that
are, by definition, incomplete. This not a minor difference, as incompleteness is
the most common feature of information exchanged in an inter-organizational
business process; it may also be an explicit decision that is taken to avoid defin-
ing aspects that are not relevant to the model and, nevertheless, cannot be
considered as false knowledge. Unfortunately, the restricted set of constructs
that are provided by SW languages, such as OWL DL, can express only a lim-
ited subset of the FOL structures that may stem from BR formalization. Firstly,
although OWL is very good at expressing constraints on concept and property
definitions, business rules often need to take into consideration data instances
for their enforcement. Secondly, the model-theoretic approach to OWL reason-
ing services has dramatic consequences on computational complexity and this
inevitably narrows the set of logic structures that can be expressed. As an ex-
ample, the following definition cannot be modeled with OWL DL:

a direct distributor is a manufacturer of a product 9)

that is also a distributor of the product

In fact, translating this rule amounts to comparing the fillers of properties pro-
ducedBy and distributedBy (i.e., the instances at the other end of these relations)
for any given product, in order to determine if the product’s manufacturer is
also a distributor for the same product. Instead, (@) can be easily translated into
a Horn rule of the following form:

Product(x) A producedBy(z, y) A distributedBy(z,y) — DirectDistributor(y) (10)

In order to straightforwardly integrate Horn rules with the structural com-
ponent of the knowledge base, rules are expressed in the SWRL formalism
[Boley et al., 2004]. Since the entities on the left-hand side of the formula are to
be considered open with regard to inference, it is possible that evaluating them
under the CWA (the only possible interpretation for Horn rules) may not reflect
the actual semantics of ([@). Moreover, constraints expressed by BR on n-ary
relations may not be expressed with OWL by objectifying the relation; consider
the following rules introducing the notion of market.

a product is distributed in at least one market (11)
a product that is distributed in a market is distributed (12)

by exactly one distributor in the market

While it is possible to express (1) as a DL concept definition, the constraint
expressed by ([[2) cannot. In fact, the triples market-product-distributor should
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first be grouped according to the market, then according to the product, and
only then it may be checked whether the constraint holds. This degree of com-
plexity cannot be expressed as DL concept and property definitions. The second
category of entities that can populate the business domain is constituted by
closed entities, i.e. data structures that are under full control of the system.
These data can be expressed with the wide range of SWRL constructs and can
be evaluated according to CWA, with no loss in the semantics being expressed.
Let us introduce in the business vocabulary the notion of article to indicate,
among products in a market, those that are produced by the company under
consideration:

an article is a product that is produced by the company (13)

Whereas article represents a closed entity (i.e., the company is supposed to ex-
haustively enumerate its products in the knowledge base), rule ([I3]) defines it
as a specialization of product, which is an open entity. This is a major motiva-
tion for the conjunct evaluation of both categories of constructs. Moreover, the
open/closed status of an entity may also be implicitly derived by those of the
entities defining the former. Consider the following definition of target market:

a target market is a market and an article is distributed in the market

Since knowledge on articles is, by definition, complete, the rule identifies a closed
specialization of the open concept market whose instances are of direct interest to
the company because some of its products are distributed in that market. Even if,
singularly taken, articles and products can be expressed in their full semantics
by SWRL rules and OWL constructs, mixing them up may not preserve this
property. This is due to information interchange between the distinct reasoning
engines that are processing, respectively, closed and open constructs.

2.3 Interpretation Issues

So far, we have been using the term ‘interpretation’ in the broader sense of ‘the
act of interpreting’. Now, in order to explain the differences between CWA and
OWA reasoning, we must shift to the precise notion of ‘interpretation’ used in
model theory, that is a ‘mapping from the language to a world’. In the bare-
bones knowledge base introduced in this Section, interpretations can be roughly
assimilated to assignments of individuals to variables in the logic structures de-
rived from BR. In order to exemplify this, we further specialize concept reseller
with concepts shop retailer and web-enabled retailer. These concepts distinguish
resellers that are capable of selling goods online from those that don'’t.

a reseller is a shop retailer or a web-enabled retailer (14)

Note that rule (Id]) also implies that, in our simple example, a reseller has to be
either a shop retailer or a web-enabled retailer. These new open entities may be
straightforwardly expressed with OWL DL through the union operator:

Retailer = ShopRetailer LI WebEnabledRetailer
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Now suppose that two distinct rules are created (it may be by different peo-
ple and for different purposes) associating the newly introduced entities with
discount rates that can be applied to them.

a shop retailer has a discount of 10% (15)
a web-enabled retailer has a discount of 15% (16)

These kind of associations generally require SWRL definitions because rules
([@3) and ([I0) amount to declaring new property instances relating individuals
to literals ‘10%’ or ‘15%’.

ShopRetailer(z) — hasDiscount(x, ‘10%")
WebEnabledRetailer(x) — hasDiscount(x, ‘15%")

Finally, suppose that individual SHOP-01 in the knowledge base is known to be
a reseller, but it is not known whether it is a shop or a web-enabled retailer
(this can be formalized with the assertion Reseller(SHOP-01)). Now, in order to
show that it may not be straightforward to derive all possible answers to a
query, it is sufficient to query the knowledge base for individuals that have
a discount rate associated with them. Intuitively SHOP-01 should be returned
because, by rule ([I4)), either of the rules should be applicable to the individual
(albeit it is not known, at the moment, which one). On the contrary, this is the
typical situation where the model-theoretic approach of OWL reasoning cannot
be integrated with the single-model approach of SWRL reasoning without losing
information. Specifically, the former will consider SHOP-01 as either instance
of ShopRetailer and WebEnabledRetailer in each of the interpretations that are
compute(ﬁ; instead, SWRL reasoning would not consider either assignment to
hold in the interpretation computed on the basis of facts that are explicitly
known to the system.

2.4 Modal Evaluation of Business Rules

Business rules determine which states and state transitions are possible or per-
mitted for a given business domain. Modal BR can be of alethic or deontic
modality. Alethic rules are used to model necessities (e.g., implied by physical
laws) which cannot be violated, even in principle. For example, an alethic rule
may state that an employee must be born on at most one date. Deontic rules are
used to model obligations (e.g., resulting from company policy) which ought to
be obeyed, but may be violated in real world scenarios. For example, a deontic
rule may state that it is forbidden that any person smokes inside any company
building. It is important to remark that widespread domain modeling languages
such as the Unified Modeling Language (UML) typically express alethic state-
ments only. When drawing a UML class diagram, for instance, the modeler is

5 Actually, also as instances of both concepts at the same time, because this is not
explicitly prohibited by definition (I4]).
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stating that domain objects belonging to each UML class MUST have the at-
tribute list reported in the class definition, implicitly taking an alethic approach
to domain modeling. In business practice, however, many statements are deon-
tic, and it is often important (e.g., for computing metrics) to know if and how
often they are violated. Much research work has been done to provide a logics-
based model for BR including modalities. Indeed, supporting modalities does
not mean that it is mandatory to map the BR to a modal logic. For instance,
work by the BR OMG team and specifically by Terry Halpin (including his
package NORMA [Curland and Halpin, 2007], an open-source tool which sup-
ports deontic and alethic rules) addresses logical formalization for SBVR by
mapping BR’s deontic modalities into modal operators obligatory (O), permitted
(P) (used when no modality is specified in the rule), and forbidden (F). Deontic
modal operators have the following rules w.r.t. negation:

~Op=P~p
~Pp=0~p=Fp

Other modal operators used for mapping BR alethic rules are necessary (O), i.e.
true in all possible states of the business domain, possible (¢), i.e. true in some
state of the business domain, and impossible (~ ¢). Alethic operators’ negation
rules are as follows:

~Op=U~p
~Op=0~p

Terry Halpin’s NORMA approach represents BR as rules where the only modal
operator is the main rule operator, thus avoiding the need for a modal logics
model. Some allowed BR formulations that violate this restriction may be trans-
formed into an equivalent NORMA expression by applying modal negation rules,
the Barcan formulae, and their converses:

VpOFp = OVpFEp
IpOFp = OIpFp

For instance, the BR For each customer, it is necessary that he provides a credit
card is transformed into It is necessary that each customer provides a credit cardl.
However, BR rules emerging from business modeling cannot always be trans-
formed into rules where the only modal operator is the main operator. To support
such cases, in principle there is no alternative but to adopt a semantics based on
a modal logic; but the choice of the “right” modal logic is by no means a triv-
ial exercise, due to tractability and expressive power problems |[Linehan, 2000].
Modal logics engines do exist; for instance, MOLOG [Farinas del Cerro, 1986]

" Another transformation that could be used in this context is the one based on
Barcan formulae’s deontic variations, i.e. VpOFp = OVpFp. We shall not discuss
here the application of these transformations to normalizing modal logic formulas;
the interested reader can refer to [Linehan, 2006].
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has been developed by the Applied Logic Group at IRIT from 1985 on, initially
supported by the ESPRIT project ALPES. MOLOG is a general inference ma-
chine for building a large class of meta-interpreters. It handles Prolog clauses
(with conjunctions and implications) qualified by modal operators. The language
used by MOLOG can be multi-modal (i.e., contain several modal operators at the
same time). Classical resolution is extended with modal resolution rules defin-
ing the operations that can be performed on the modal operators, according to
the modal logics that are chosen. However, instead of choosing a modal logics
and applying MOLOG-style modal reasoning, most current approaches to BR
semantics are based on Horn rules, which is the basis of Logic Programming
and counts on many robust implementations. Actually, DLs also provide all the
necessary constructs to evaluate multi-modal formulas (by mapping operators
to universal and existential quantifiers) but, for DL as for Horn FOL, processing
modal formulations in conjunction with the OWL and SWRL constructs intro-
duced so far can easily lead to undecidability. Consequently, much work has to
be done to translate BR into models that can be safely executed by reasoners
preserving most of the semantics of the original definitions.

3 Declarative Process Flow Description

An important component of a successful business strategy is related with the
organization of process work flows. To this purpose, a business process is viewed
as the sequence of activities and decisions arranged with the purpose of deliv-
ering a service, assuring security and effectiveness, in accordance to the service
life cycle. Due the the procedural nature of notations typically used for these
descriptions, process flows are usually validated against process termination,
verifying the absence of interferences and procedural inconsistencies. Violation
metrics based on this validation can be easily devised; still, they do not exhaust
the possible metrics that can be calculated on a flow. This Section discusses pro-
cess flow description, underlining the role played by declarative representations
in supporting model cross-checking or sharing a process description among a
community of users.

3.1 Workflow Languages

Graphical notations aimed at describing process flows are one of the most
widespread tools for supporting business process modeling. Their popularity
is due to the capability of supporting both immediate reading and rigor-
ous formalization. Another important advantage is that graphical notations
are understandable by all business users (e.g., business analysts designing a
process, technical developers implementing it, business people monitoring the
process, etc.). A broad range of standards allowing formalization of process
flows exist. A partial list of more relevant standards includes: UML Activ-
ity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS, Activity-
Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains
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(EPCs)[van der Aalst et al., 2003] In May 2004, OMG proposed a standard
aimed at reducing the fragmentation of notations and methodologies. This stan-
dard was named Business Process Modeling Notation (BPMN) [Bauer et all]
and was designed as a tradeoff between simplicity of notation and expressivity.
Another very diffused standard is constituted by UML Activity Diagrams. Cur-
rently, these two standards are gaining a large diffusion: on the one hand, the
first is more popular in the business analysts community; on the other hand,
the latter is more popular in the software analysts community. A recent OMG
initiative [BMI] is aimed at reconciling UML AD with BPMN by means of an
integrated metamodel.

In general, the properties of a flow of transaction cannot be captured by a
declarative formalization. This is primarily due to the dynamic nature of trans-
actions that describe dependencies among events and may require the specifi-
cation of complex processes with the presence of event-driven behaviors, loops,
real-time evaluation of actions, and parallelism. Model checkers for declarative
theories require a finite state space whereas dynamic process, in general, have
an infinite state space. Nowadays, Petri nets are widely adopted for workflow
modelling and they have a formal semantics by means of which model checkers
can be implemented [Grahlmann, 1997]. Another widely adopted formalization
is m-calculus [H Smith, 2003] and it is a process algebra describing mobile sys-
tems. Key notions of this formalization are communication and change. Distinct
m-calculus processes may communicate by referring to other processes trough
links and pointers. By doing this, the development of a process can be inserted
into another and generate a new development cycle. Activities in a workflow are
conceptually mapped to independent w-calculus processes. This way, processes
use events as the form of communication to determine the behavior of the work-
flow. Another option is to use formalizations based on higher-order logic, such as
situation calculus or temporal logic. Situation calculus was introduced by John
McCarthy in 1963, it is a logic formalism designed for reasoning about dynamic
domains. Recently, it was used as a base for designing a programming language
named ConGolog [De Giacomo et al., 2000]. Temporal logic is a logic aimed at
reasoning about propositions qualified in terms of time. Traditionally, tempo-
ral Logic formalizes only one of the two paradigms that are required in order
to deal with dynamic and concurrent systems. In fact, the information to be
derived from the formalization of a dynamic system can involve either the prop-
erties a state must satisfy and also the temporal dependencies between events.
Some early works, such as [Nicola, 1995], proposed a formalization including
both states and events. In [Gnesi and Mazzanti, 2003], such a formalization is
applied to system modeling, i.e. UML diagrams.

3.2 A Temporal Logic for UML Statecharts

The main problem in applying model checking to business processes is the state
space explosion: for real-life case studies, the state space is usually too large to
be efficiently mapped. One solution is to encode the state space symbolically,
using predicates, rather than enumerating it. This way, we may work on a more
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abstract representation while preserving the structure of the dynamic model.
The most common way to adopt a predicate-based model is the adoption of
temporal logics. In particular we can mention Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL)[Jain et al., 2005]. In order to deal with the
infinite states generated by loops, special model checkers have been implemented.
These model checkers develop algorithms for strong fairness. A strong fairness
constraint is aimed at excluding loops. If p and g are properties, we state that if
p is true infinitely often, then ¢ must be true infinitely often as well. Intuitively,
a property p can only be true infinitely often if there is some kind of loop in the
model in which p is made true. Consequently, the strong fairness constraint on
(p, q) says that if there is some loop which makes p true infinitely often, then ¢
must be made true infinitely often by the loop as well. If this is not the case,
the loop is not strongly fair and the loop must be exited after a finite number
of iterations.

3.3 Declarative Representation

Despite the limitations in describing dynamic and concurrent systems, declara-
tive formalizations are not irrelevant to dynamic and concurrent systems, and
can be exploited for some important tasks related to validation such as:

— consistency checking;
— data exportation;
— annotation.

Consistency Checking. This is a task where declarative formalizations play the
main role. Traditional formalisms are aimed at verifying performance properties
of workflow models. For instance, a typical problem is to identify if a path is
terminating or which tasks are in dependency with others. Declarative formal-
izations cannot support this kind of controls but act very well for evaluating the
consistency of the objects acting in the transaction or the data objects exchanged
in the transaction, as discussed in [Haarslev and Moller, 2001].

Data Exportation. Basically any notation used for representing process flow rely
on an XML format used for exporting data. This is a declarative description of
the flow, usually limited to a syntactic description of the elements in the nota-
tion, that in principle could be queried for consistency checking purposes. This
approach is not straightforward, because it requires reconstructing the semantics
of the notation directly in the query step. Since the usual approach is to pro-
vide a semantic mapping between XMI and the individual format to be queried
|[Fox and Borenstein, 2005].

Annotation. In [Melnik and Decker, 2000], a RDF format has been provided for
representing UML diagrams. RDF is a language for data annotation that allows
to attach complex assertions (in the form of triples subject-predicate-object) to
URIs, i.e. any type of resource. Typically this language is used in systems for
cooperative design, such as described in [Ceravolo et al., 2007]. The final out-
put of this approach allows to share process flow annotations and cooperatively
update the description of a process.
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3.4 Consistency Checking

Here we propose an example of consistency check between the structural part of
the model and the process flow. Fig.[[lshows a BPMN diagram describing process
coordination between distinct actors, represented by different swim lanes in the
diagram. A declarative description of the flow can describe business transactions
in terms of the actors involved in the transaction plus input and output data
required for executing the transaction. As an example, the static model may
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feature concept definitions for Event, Activity, Gateway, and all the other BPMN
constructs. Entities in Fig. [T such as the tasks activated by the Retailer in the
first lane, can then be expressed in terms of assertions (i.e., subject-predicate-
object triples), such as the following:

ReceivePayment rdf:type Task
RequestPayment rdf:type Task

Instances of these concepts may be related with each other in order to express
general requirements that should be satisfied by processes, such as the following:

ReceivePayment follows RequestPayment

Clearly, a diagram that contradicts the requirement can be spotted at design
time. Another possible usage of the static model is to constrain the instances of
concept message that can be exchanged between Tasks. As an example, refer-
ence to a specific instance of concept Message named invoice can be restricted
to Tasks that are contained in the Retailer lane. More interestingly, dynamic
requirements that are related with run-time execution of processes can also be
expressed. In this case, logfiles produced by the execution of processes are inter-
preted as concept instances and properties relating them with each other.

4 Declarative Value Model Description

Before implementing and executing a business collaboration, models describing
this collaboration can be developed. These models help to analyze a priori the
collaboration with different stakeholders. Agreements and clarifications can be
made on different levels of the collaboration. A model especially important for
describing inter-organizational collaborations is a value model, estimating prof-
itability for every actor involved in the collaboration. In a collaboration each
stakeholder is profit and loss responsible. Analyzing a priori profit opportunities
as well as agreeing on the exchanges of value between the different stakeholders
is highly important. In this Section, we use a running example for illustration.
In our example, a manufacturer develops a global value model in order to es-
timate profitability of his business, before implementing his business, and to
monitor his business during the life cycle of the collaboration. Several mod-
eling techniques can be used to estimate profitability of a collaboration, e.g.
Business Modeling Ontology [Osterwalder and Pigneur, 2002] and REA model-
ing [McCarthy, 1982]. Although modeling techniques differ, value models depict
always which entities of value are exchanged between stakeholders. Here, w