
OrganizationScience
Vol. 18, No. 4, July–August 2007, pp. 613–630
issn 1047-7039 �eissn 1526-5455 �07 �1804 �0613

informs ®

doi 10.1287/orsc.1070.0297
©2007 INFORMS

Familiarity, Complexity, and Team Performance in
Geographically Distributed Software Development

J. Alberto Espinosa
Kogod School of Business, American University, Washington, D.C. 20016, alberto@american.edu

Sandra A. Slaughter
College of Management, Georgia Tech University, Atlanta, Georgia 30332, sandra.slaughter@mgt.gatech.edu

Robert E. Kraut, James D. Herbsleb
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,

{robert.kraut@cmu.edu, jdh@cs.cmu.edu}

While prior research has found that familiarity is beneficial to team performance, it is not clear whether different kinds
of familiarity are more or less beneficial when the work has different types of complexity. In this paper, we theorize

how task and team familiarity interact with task and team coordination complexity to influence team performance. We posit
that task familiarity is more beneficial with more complex tasks (i.e., tasks that are larger or with more complex structures)
and that team familiarity is more beneficial when team coordination is more difficult (i.e., for larger or geographically
dispersed teams). Finally, we propose that the effects of task familiarity and team familiarity on team performance are
complementary. Based on a field study of geographically distributed software teams, two of our hypotheses are disconfirmed:
Our results show that the beneficial effects of task familiarity decline when tasks are more structurally complex and are
independent of task size. Conversely, the hypotheses for team familiarity are confirmed as the benefit of team familiarity for
team performance is enhanced when team coordination is more challenging—i.e., when teams are larger or geographically
dispersed. Finally, surprisingly, we find that task and team familiarity are more substitutive than complementary in their
joint effects on team performance: Task familiarity improves team performance more strongly when team familiarity is
weak and vice versa. Our study contributes by revealing how different types of familiarity can enhance team performance
in a real-world setting where the task and its coordination can be highly complex.

Key words : familiarity; team familiarity; task familiarity; teams; software development; global software development;
geographically distributed teams; global software teams; shared work knowledge; team cognition

Introduction
The importance of teams as fundamental units of work in
organizations (Hackman 1987, Sproull and Kiesler 1991)
has been well-documented (Cohen and Bailey 1997,
Harrison et al. 2003, McGrath 1991). Teams are particu-
larly useful when tasks are too large or too complex for
a single individual to undertake. However, teamwork is
not easy, requiring a substantial amount of coordination
among team members, particularly when task activities
are interdependent (Thompson 1967, Van de Ven et al.
1976). To be effective, team members need to coordinate
and carry out their “taskwork” and “teamwork” activities
competently (Klimoski and Mohammed 1994).
When tasks are simple and well-defined, it is easy to

identify and understand which parts of the task affect
other parts. Performing taskwork activities, however,
becomes harder as the number and relatedness of task
activities increases because this added “task complexity”
makes it more difficult for individuals to integrate the
various parts of a task and identify how task components
affect each other. Individuals working on these more
complex tasks also need to process more information
cues (Wood 1986) in order to identify, understand, pri-
oritize, and resolve task component dependency issues,

diverting their attention from other task responsibilities
and making it more difficult to perform the task.
In addition, when a task is carried out collabora-

tively by more than one individual, the task activities
of the various individuals also need to be coordinated
and integrated, further increasing the complexity of the
teamwork effort. For example, a task can have a cer-
tain inherent level of complexity due to its size and
structure. However, this same task can become more or
less complex depending on how many people work on
it and on how these people are configured geograph-
ically because the individuals need to coordinate and
integrate their respective work. The challenges of work-
ing as a team increase under conditions where it is dif-
ficult for members to communicate and coordinate with
each other and effectively manage their mutual depen-
dencies (Malone and Crowston 1994). We refer to these
more difficult conditions as “team coordination com-
plexity.” Specifically, we consider the challenges of team
size and dispersion. Larger teams have more produc-
tive resources. However, Brooks’ concept of the “myth-
ical man month” is based on the fact that adding more
team members to a project doesn’t necessarily help it

613



Espinosa et al.: Familiarity, Complexity, and Team Performance
614 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

to finish sooner (Brooks 1995). Instead, adding indi-
viduals to a team exponentially increases the number
of possible dependency links among team members,
bringing about substantial coordination and project man-
agement overhead. Similarly, when team members are
separated geographically, their ability to communicate is
hampered through many routes. Among other problems,
geographic dispersion makes it challenging for individ-
ual members to get acquainted with their colleagues’
work skills and habits, identify and access expertise
when needed, develop task, presence, and contextual
awareness, and manage their respective task dependen-
cies (Herbsleb and Grinter 1999).
We contend that familiarity can help teams han-

dle complexity more effectively. Familiarity helps team
members perform their individual task activities and
communicate and coordinate their work with their team-
mates. The concept of familiarity in organizational teams
has been defined as “the knowledge that members of
a team have about the unique aspects of their work”
(Goodman and Garber 1988), such as knowledge about
the task itself and about other members on the team
(Littlepage et al. 1997). As members of a team work
together over time, they become familiar with the task
domain and with each other (Katz 1982), and they
develop a common knowledge base through which team
interaction and location of expert sources in the team can
occur (Alavi and Leidner 2001). Studies have shown the
positive benefits of familiarity on team performance in
mining (Goodman and Leyden 1991), flight simulation
(Kanki and Foushee 1989), problem solving (Gruenfeld
et al. 1996, Littlepage et al. 1997), and various other
tasks (Harrison et al. 2003). However, while it may seem
intuitively obvious that familiarity with the task and with
team members improves team performance, some of the
empirical evidence is not so clear.
Summarizing the mixed results in the familiarity lit-

erature, Harrison and colleagues (Harrison et al. 2003)
have conjectured that the effects of familiarity on team
performance may differ depending on the nature of
the task itself. Similarly, Argote and colleagues (Argote
et al. 1995, Reagans et al. 2005) have empirically inves-
tigated team performance and task complexity in exper-
imental and field settings and have also concluded that
the task matters when studying the effects of famil-
iarity. Their experimental study of student teams per-
forming origami tasks found that team performance
increased with task experience and decreased with
task complexity and that performance on simpler tasks
improved more strongly with task experience than on
more complex tasks. They also found that team mem-
ber turnover had a negative effect on performance but
this effect was weaker with more complex tasks, pos-
sibly because teams with higher turnover were more
innovative (Argote et al. 1995). A more recent field

study discovered that team performance in medical pro-
cedures actually decreased with small increments of task
experience in the team but increased substantially once
task experience exceeded a certain threshold, perhaps
because team members tackled more complex tasks as
they gained experience (Reagans et al. 2005). The results
of these studies suggest that aspects of teams and task
complexity may interact in complicated ways, and that
further research is necessary to understand how these
interactions may affect team performance. As Simon’s
(1955) concept of “bounded rationality” implies, indi-
viduals have limitations on their computational ability to
process all the constraints and feasible choices to solve
a complex problem. Furthermore, the solution to a com-
plex problem often involves adapting solutions to simi-
lar complex problems solved in the past (Simon 1996).
Thus, more familiar team members may be in a better
position to cope with complexity.
To the best of our knowledge, no prior study has the-

orized and empirically investigated how different types
of familiarity—task and team—interact with different
dimensions of complexity—task and team coordination
complexity—in their effects on team performance.
Learning more about these interactions is important to
better understand how team members deal with the dif-
ferent complexities that increasingly characterize their
work environments. In this paper, we theorize how
task and team familiarity and complexity complement
or offset each other in affecting team performance.
Specifically, we investigate whether task familiarity is
particularly beneficial when team tasks are more com-
plex, i.e., larger or more structurally complex, and
whether team familiarity is more beneficial when team
coordination is more difficult, i.e., when teams are larger
or geographically dispersed. Finally, we draw on the lit-
erature on transactive memory to propose an interaction
between task familiarity and team familiarity in their
effects on team performance. Brandon and Hollingshead
(2004) have suggested that performance is jointly influ-
enced by familiarity with the task, the expertise required
to complete the task, and the people who possess this
expertise because this familiarity helps locate and access
the necessary expertise in the team. However, it is not
clear whether familiarity with the task and team are com-
plementary or substitutive, or if they are simply addi-
tive in their effects on team performance. In sum, our
research addresses this question: How do task familiar-
ity, team familiarity, and complexity complement or off-
set each other in affecting team performance?

Software Product Development
We study teams in a field setting that is often charac-
terized by high levels of complexity: geographically dis-
tributed software product development. Software product
development is a context well-suited to investigate how



Espinosa et al.: Familiarity, Complexity, and Team Performance
Organization Science 18(4), pp. 613–630, © 2007 INFORMS 615

familiarity influences the effects of complexity on per-
formance. It involves the addition and modification of
features in a product base by several developers work-
ing in teams, who need to manage the tightly coupled
interdependencies with each other and the complexities
of their various task activities. Software tasks are in-
herently complex, but this complexity varies greatly de-
pending on characteristics of the software task itself like
size and structure, and on the coordination challenges
imposed on the team by factors like team size and geo-
graphic dispersion, thus making software product devel-
opment an ideal task for our study.

Theoretical Foundations and Hypotheses
Our premise in this study is that familiarity helps team
members cope with complexity. Workers who are famil-
iar with the task and its context are thought to have
larger bodies of knowledge, better organization of this
knowledge, and better internal representation of prob-
lems (Goodman and Shah 1992), all of which enable
them to respond to work stimuli more quickly and auto-
matically. A person’s familiarity with a task reduces
the subjective complexity of the task as experienced by
that person (Campbell 1988). Similarly, the coordina-
tion complexity experienced by team members when
working with other members is reduced when they are
familiar with each other. To understand how familiar-
ity offsets some of the negative effects of complexity,
it is important to consider how different kinds of famil-
iarity interact with different dimensions of complexity.
Familiarity researchers distinguish between task famil-
iarity and team familiarity, arguing that familiarity with
the task is important for individual task performance
while familiarity with other team members is impor-
tant for effective team interaction (Harrison et al. 2003,
Littlepage et al. 1997). In the following sections, we
examine these two types of familiarity and their respec-
tive interactions with task complexity and team coordi-
nation complexity.

How Task Familiarity Offsets Task Complexity for
Team Performance
Goodman and Leyden (1991) reasoned that task famil-
iarity has a positive effect on task performance because
every task requires unique configurations of machin-
ery, physical environment, and work activities; there-
fore, team members’ specific knowledge about these
aspects of their work can make them more productive.
These beneficial effects have been confirmed in empir-
ical studies with mining teams (Goodman and Leyden
1991), experimental problem-solving tasks (Littlepage
et al. 1997), medical teams (Reagans et al. 2005), and
in software development (Banker and Slaughter 2000,
Boehm 1981, Brooks 1995, Curtis et al. 1988, Walz
et al. 1993). While the general benefits of task familiar-
ity are apparent from this empirical evidence, it is not

clear whether task familiarity can complement or off-
set different task complexity conditions. In their studies
with mining teams, Goodman and Leyden (1991) found
that familiarity with different aspects of the task had
differential effects on performance, suggesting that task
familiarity may complement certain task factors but not
others. Goodman and Shah (1992) reasoned that prior
familiarity with the task can have a stronger effect on
performance when the inherent characteristics of the task
make it more difficult for team members to understand
it. However, the results from the origami experiment by
Argote et al. (1995) suggest the opposite, indicating that
familiarity with the task is most beneficial for simpler
(not more complex) tasks.
In software development, the size of the task is one

characteristic that can make the task complex (Banker
et al. 1998, Curtis et al. 1979, Kemerer 1995). Soft-
ware task size is a function of the amount of work, i.e.,
the number of new and changed software instructions
implemented. These instructions create new functional-
ity or modify the existing functionality of the product
base. Implementing the instructions also requires knowl-
edge of which parts of the software product will be
affected by the changes. Thus, software developers not
only need to understand several functional aspects of
the software product base but also the technical details
of the associated software code (e.g., file names, vari-
able names, and interface requirements). When a partic-
ular software project requires more numerous changes,
implementing the various changes becomes more diffi-
cult because there are more components that need to be
updated and more information, such as variable names,
software programs, and interface requirements that need
to be taken into account, which in turn increase the
knowledge and skill requirements to complete the task
(Wood 1986). Thus, all else equal, a software project
that requires more instructions to change the function-
ality of the existing product base will be more complex
than one that requires fewer instructions.
Task familiarity is particularly important for produc-

tivity in larger software tasks because with a greater
number of changes, more of the software product code
base is affected. The developers’ specific knowledge of
the application domain and product base helps them to
pinpoint more swiftly and accurately where in the soft-
ware code base the changes need to be made (Banker
and Slaughter 2000). In addition, familiarity with the
software and technical environment helps developers to
be more efficient in testing and implementing larger
changes because they know what needs to be tested and
how to implement the changes (Curtis et al. 1988). Thus,
we posit:

Hypothesis 1. Task familiarity and task size interact
positively in their effect on team performance, such that
the positive effect of task familiarity on team perfor-
mance is stronger with larger tasks.



Espinosa et al.: Familiarity, Complexity, and Team Performance
616 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

Task complexity increases not only with task size
but also with the interrelationships between task activ-
ities and with the amount of information that needs to
be processed to carry out these activities. This type of
complexity is consistent with concepts like task com-
ponent and coordinative complexity (Wood 1986) and
structural complexity (Darcy et al. 2005, Xia and Lee
2005) discussed in the literature. In software develop-
ment, structural complexity describes the characteristics
or attributes of the software artifact that is being created
or modified. Generally, software structures composed of
more interrelated modules are considered more complex
(Darcy et al. 2005). This is because more information
needs to be processed during task performance: In addi-
tion to comprehending each of the individual software
modules, developers must also expend additional cog-
nitive effort to understand how the modules are con-
nected. For example, when changing a module that is
related to many other modules, developers must envi-
sion how the changes made will affect these other mod-
ules. Additional testing may also be required to ensure
that the module changes do not negatively affect the
performance of related modules. Thus, as the interrela-
tionships among various parts of the software increase,
the task becomes more complex and developers need to
spend even more time discerning and verifying how their
work in one part of the software will affect other parts
(Banker et al. 1993, Banker et al. 1998). Indeed, best
practices in software development recommend that soft-
ware architects limit the interdependence between soft-
ware modules precisely to reduce this type of structural
complexity (Darcy et al. 2005).
Although the prior research on software engineering

suggests that as software becomes extremely complex,
the inherent complexity eventually is irreducible and
can not be overcome with further developer experience
(Brooks 1995), we would generally expect that greater
familiarity should be helpful for completing more com-
plex software tasks. Developers who are more familiar
with the functional and structural aspects of the software
should be able to integrate the changed modules into the
software code base more efficiently (Curtis et al. 1979).
In other words, we expect that familiarity with the task
will generally be more beneficial when working on more
structurally complex tasks. Team members having more
familiarity with the task may be better able to anticipate
the impacts of their activities on other parts of the task,
reducing the effort needed to verify the changes and to
resolve problems. Thus, we posit:

Hypothesis 2. Task familiarity and structural com-
plexity interact positively in their effect on team perfor-
mance, such that the positive effect of task familiarity on
team performance is stronger when the structure of the
task is more complex.

How Team Familiarity Offsets Team Coordination
Complexity for Team Performance
We have discussed how greater task size and struc-
tural complexity can increase the difficulty of complet-
ing a software task for an individual developer. However,
when a software task is completed by many develop-
ers, it is also necessary to coordinate their efforts. The
complexity of coordinating the task will be affected by
how easy or difficult it is for the multiple collaborators
involved to integrate their various pieces successfully. In
addition, the task will become increasingly more diffi-
cult when the conditions in which these members oper-
ate make it more difficult for them to communicate and
exchange information. Team familiarity can help offset
some of these problems. The beneficial effects of team
familiarity have been found in flight simulation (Kanki
and Foushee 1989), medical (Reagans et al. 2005), soft-
ware (Crowston and Kammerer 1998, Faraj and Sproull
2000), and various experimental tasks (Gruenfeld et al.
1996, Littlepage et al. 1997), and in transactive memory
research (Lewis 2003, Liang et al. 1995, Wegner 1995).
Teams that have prior experience working together on the
same projects start a new task with better expectations
about each other, communicate more effectively because
they have more common ground and can refer to the same
technical terminology (Cramton 2001), are more effec-
tive at locating specialized knowledge and coordinating
expertise within the team (Faraj and Sproull 2000), have
a better understanding of how their individual work con-
tributes to each other’s tasks, and better understand how
to obtain cooperation from other members.
Because team familiarity helps members identify and

access expertise more effectively, we anticipate that
when the work environment affects the team’s ability to
identify and access expertise, it will also influence how
strongly team familiarity affects team performance. It is
important to note that when team members are familiar
with the task and understand the various roles people
need to undertake to carry out the task (e.g., devel-
oper, testing engineer, software architect), this familiar-
ity with roles can also help members access expertise.
As Brandon and Hollingshead (2004) have noted, it is
important to be familiar with not only the expertise peo-
ple have but also how that expertise applies to the task.
Our study focuses more specifically on familiarity with
team members rather than familiarity with roles. Con-
sequently, we consider a single role in the context of
our study which is familiar to all team members in our
sample—i.e., software developer. Harrison et al. (2003)
have suggested that team member familiarity improves
performance by reducing uncertainty about team mem-
bers and reducing process losses because people spend
less time acquiring information about each other. They
further argued that the communication flows in familiar
teams are more synchronized and more firmly estab-
lished. They concluded that team members’ familiar-
ity with each other provides a basis for coordination



Espinosa et al.: Familiarity, Complexity, and Team Performance
Organization Science 18(4), pp. 613–630, © 2007 INFORMS 617

and division of labor and also reduces the need for
team interaction. This suggests that team familiarity may
be more beneficial for performance in the presence of
factors that increase uncertainty about team members,
create more process losses, make it difficult to commu-
nicate, or make it difficult to coordinate and implement
effective team processes.
We posit that team familiarity will have a stronger

effect on team performance under more complex team
coordination conditions that make it more difficult for
team members to communicate, coordinate, and develop
further familiarity with each other. Team familiarity
should reduce the subjective complexity experienced by
team members (Campbell 1988) when they collaborate
with each other because they can locate expertise in the
team more effectively and figure out more productive
ways to work together. Higher team coordination com-
plexity conditions that limit the opportunities for team
members to interact and become more familiar with each
other or make the available interaction mechanisms less
effective will make team familiarity more important for
performance. One important team coordination complex-
ity factor often discussed in the software engineering
and organizational literatures is geographic dispersion
(Carmel 1999, Cohen and Gibson 2003, Herbsleb and
Grinter 1999, Herbsleb and Mockus 2003, Kirkman and
Mathieu 2005, Powell et al. 2004).
Both the frequency (Allen 1977) and timeliness

(Gittell 2001, Waller 1999) of communication can be
adversely affected when team members are not in close
proximity, often channeling communication into less
interactive media with fewer contextual references. Geo-
graphic dispersion also affords less shared context for
task work (Cramton 2001, Hinds and Mortensen 2005),
less shared understanding (Hinds and Weisband 2003)
and common ground in team member communication
(Olson and Olson 2000), and fewer opportunities for
informal and spontaneous communication (Kiesler and
Cummings 2002), all of which affect team members’
ability to coordinate. In addition, geographic separation
causes increased coordination overhead and more sub-
stantial delays when initiating contacts and resolving
issues (Carmel 1999, Herbsleb and Mockus 2003).
Team familiarity can help geographically dispersed

team members mitigate some of these problems by
reducing the need to communicate frequently. As Grif-
fith et al. (2003) noted, when distributed teams have
formed some collective knowledge, they are better able
to access that knowledge. In addition, team familiarity
can help team members anticipate each others’ actions,
develop more effective routines, and more accurately
convey and interpret meaning when they do commu-
nicate because of their common ground. For example,
two geographically dispersed software developers who
are familiar with each other and are working on the
same modification will be able to anticipate each other’s

changes more accurately and communicate key integra-
tion issues more effectively. As Herbsleb and Grinter
(1999) found, geographically distributed teams often use
strategies intended to increase familiarity among team
members to overcome the problems associated with
distance. These strategies include meeting face-to-face
before project work begins, assembling teams with mem-
bers who have worked together in the past, and traveling
frequently to other sites. On the other hand, while team
familiarity is still beneficial for colocated software teams,
it is not as critical because members who are not famil-
iar with each other can always see and talk to each other
to coordinate and exchange information about their work
(Kraut and Streeter 1995, Perry et al. 1994), making team
familiarity less important. As studies of software teams
have found, being in close proximity particularly when
teammates are both visible and available helps members
coordinate their work more effectively through frequent
interaction (Teasley et al. 2002). Thus, we posit:

Hypothesis 3. Team familiarity and geographic dis-
persion interact positively in their effect on team perfor-
mance, such that the positive effect of team familiarity
on team performance is stronger when teams are geo-
graphically dispersed.

Another important team coordination complexity fac-
tor is team size (Brooks 1995, Herbsleb and Mockus
2003, Hinds and Mortensen 2005, Kirkman and Mathieu
2005, Powell et al. 2004, Steiner 1972). Although the
effects of team size on performance for traditional colo-
cated teams are well-known, a recent review of the
research literature concluded that it is not clear how
team size affects team performance for virtual teams
(Steiner 1972, cited in Powell et al. 2004). While adding
members to a software team contributes more individ-
ual productive resources to the team, it also makes it
more difficult for all team members to interact and work
together to integrate their individual work into a single
working product. For example, a team of n members can
have as many as n�n− 2�/2 dependency links. There-
fore, the number of possible dyads that need to interact
and share information in a team increases exponentially
with team size (Brooks 1995).
Highly interdependent tasks like software develop-

ment generally require more substantial information
sharing and team communication (Herbsleb and Grinter
1999) than simpler experimental tasks. Each dependency
link between developers will demand time and effort that
can be mitigated when members are familiar with each
other and can communicate efficiently and effectively.
Also, as the team increases in size, the amount of famil-
iarity that an additional team member needs to have or
acquire about existing members will be higher. It is more
difficult to know which members know what in larger
teams, but this type of knowledge is important for per-
formance (Faraj and Sproull 2000), so team familiarity



Espinosa et al.: Familiarity, Complexity, and Team Performance
618 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

will be more beneficial for larger teams. For example, a
small software team with three developers may not need
as much prior familiarity among team members, because
each developer can quickly acquire familiarity with the
other two. In contrast, a team of 15 developers will have
more difficulty acquiring widespread knowledge of who
knows what during the task, so prior team familiarity
will be more important. Therefore, we posit that:

Hypothesis 4. Team familiarity and team size inter-
act positively in their effect on team performance, such
that the effect of team familiarity on team performance
is stronger when teams are larger.

How Team Familiarity Complements Task
Familiarity for Team Performance
So far, we have argued that task and team familiar-
ity interact with task complexity and team coordination
complexity in their effect on performance. It is also pos-
sible that these two types of familiarity interact with
each other such that one may either enhance or substi-
tute for the effect of the other. As Goodman and Leyden
(1991) noted, it is not clear whether task and team
familiarity have additive or complementary effects on
team performance. As discussed earlier, task familiarity
helps team members improve performance on individual
aspects of their task while team familiarity helps them
interact more effectively. While both kinds of familiarity
have been associated positively with team performance
(Harrison et al. 2003), there may be aspects of each type
of familiarity that overlap with the other, such as reduc-
ing the difficulty experienced by the members involved
or improving common ground for member communica-
tion, thus making task and team familiarity somewhat
substitutable. On the other hand, experimental studies
have shown that when team members develop familiar-
ity with each other, they also develop stronger gener-
alized knowledge about the task domain (Lewis et al.
2005). Similarly, when multiple team members become
familiar with the current task and similar prior tasks,
they also develop shared schemas that help them form
more accurate expectations about what needs to be done
and how individual task activities will affect the activ-
ities of others, which helps them coordinate implicitly
(Cannon-Bowers et al. 1993, Klimoski and Mohammed
1994). While team familiarity primarily affects how
team members work together, members with strong team
familiarity will also develop some form of collective
sense making, enabling them to perform their individual
activities more consistently with the team goals and the
needs of other team members (Weick and Roberts 1993).
These arguments suggest that while task and team famil-
iarity have distinct effects, they may also complement
each other.
Prior research in information processing provides sup-

port for a complementary relationship between team

and task familiarity, indicating that when team members
share task information, they discuss and use their joint
knowledge more effectively because they can recognize
each other’s expertise (Stasser et al. 1995). For example,
Littlepage et al. (1997) found an effect of task familiarity
on team performance in all three of their experimental
studies with problem-solving teams but, surprisingly, did
not find an effect of team familiarity in two out of the
three. They speculated that team familiarity did not affect
team performance when prior task familiarity was not rel-
evant for the new task. When the task was modified such
that familiarity from prior tasks was relevant, they found
a significant effect of team familiarity, suggesting that
prior task familiarity that is applicable to similar future
tasks may enhance the effect of team familiarity.
In software development tasks, while individual exper-

tise with the software helps developers code faster
(Brooks 1995), a team of experienced developers who
are very familiar with the existing application domain
will help members develop views of the task that are
more consistent with each other (Curtis et al. 1988).
Experienced developers are more likely to be thoroughly
familiar with the software processes and tools used by
the organization; therefore, they can produce code more
efficiently. Similarly, when software developers know
each other well and understand each other’s needs, their
collective sense making enables them to perform their
individual tasks in ways that take into account the task
needs of other team members (Crowston and Kammerer
1998). This leads us to posit that:

Hypothesis 5. Task familiarity and team familiar-
ity are complementary in their effects on team perfor-
mance, such that the positive effect of task familiarity is
enhanced when team familiarity is strong and, similarly,
the positive effect of team familiarity is enhanced when
task familiarity is strong.

Our study hypotheses are illustrated in our research
framework in Figure 1.

Figure 1 Research Hypotheses

Task
familiarity

Team
familiarity

Structural
complexity

Task
size

Geographic
dispersion

Team
performance

H5 (+) op

H1 (+) (ns) H2 (+) (op)

H3 (+) (sup)

Team
size

Task
complexity

Team
coordination
complexity

ns: not supported
op: opposite effect
sup: supported

H4 (+) (sup)



Espinosa et al.: Familiarity, Complexity, and Team Performance
Organization Science 18(4), pp. 613–630, © 2007 INFORMS 619

Study Method
Research Setting
We collected and analyzed archival data on software
development teams from software production sources
at a large telecommunications firm. As noted earlier,
the software product development setting is particularly
well-suited to study familiarity, complexity and team
performance. Large software organizations often employ
developers with skills ranging from novice levels to
experienced developers. Among the experienced devel-
opers, some may not be familiar with the company’s
software code while others are thoroughly familiar with
the software system base. Therefore, knowing when
familiarity has its strongest impact on performance can
help organizations assign personnel to software projects
more effectively. In addition, organizations developing
software products often operate in highly competitive
environments in which time to market is critical, so
understanding how familiarity can help reduce soft-
ware development time can have a substantial financial
impact. Nevertheless, performance continues to be prob-
lematic in software development due to the many com-
plexities of software tasks such that many projects are
not finished on time (Mann 2002).
Archival research is well-suited to performance stud-

ies because the data are objective and are unaffected by
response bias or response rates. The teams in our study
developed a major software product for telephony equip-
ment from two main locations, the United Kingdom and
the United States. The similarity in language and culture
between the two locations reduces possible confounding
effects of these and other factors associated with geo-
graphic distance (Espinosa et al. 2003). This software
product has been developed incrementally over several
years and it contains several million lines of code. Prod-
uct updates were implemented through numerous “mod-
ification request” (MR) projects, each incorporating new
and/or updated features into the product base.
An MR project is composed of several individual soft-

ware changes called “deltas.” A delta contains changes
of a few lines of code in a single software file made by
a single developer. We selected the MR project devel-
opment team as our unit of analysis because an MR
project represents a well-defined unit of software work
in the firm we studied, and MR project teams have
well-defined membership and very clear goals. Once
approved by the organization’s “change control board,”
the MR project is assigned a priority level, a develop-
ment team, a budget, and other resources. All recorded
software production data were traceable to specific MR
projects, enabling us to collect useful software produc-
tion statistics. We studied teams developing software
for one large subsystem (over 4 million lines of code)
of the telephony product—common channel signaling.
This subsystem belonged to a single internal organi-
zation, eliminating the potential confounding effects of

internal organizational boundaries in teams (Espinosa
et al. 2003). The MRs in our sample contained from 2
to 68,000 lines of code and from 1 to 1,050 deltas; they
spanned from 1 to 130 modules.
We collected data from software production informa-

tion recorded for each MR project in the software’s con-
figuration management system. Such data sources are
often used in studies involving software teams (Herbsleb
and Mockus 2003, Kemerer and Slaughter 1999, Mockus
and Herbsleb 2002). Our sample consists of all MRs
completed for this subsystem during the three years prior
to the study in which two or more developers were
involved, so only MRs completed by teams are ana-
lyzed. The three-year timeframe was selected because
no substantial technological changes took place during
the period. All MRs produced for the subsystem during
this time period were identified and included a total of
1,170 MRs containing 54,665 deltas. The information
recorded for each MR project and delta included when
the MR project was opened and when a delta was imple-
mented, who worked on it, how many lines of code were
developed, and which files and modules were impacted.

Study Variables
Table 1 presents the descriptive statistics and correla-
tion matrix for the study variables. We first define our
measures for the main variables of interest: team perfor-
mance, task familiarity, team familiarity, task complex-
ity, and team coordination complexity. We then define
the measures for all control variables. Our variable mea-
sures are also summarized in the appendix.

Team Performance. In telecommunications, quality
and time to market are critical for sustainable competi-
tive advantage. Therefore, we use the length of time to
complete an error-free MR project to measure team per-
formance. We obtained MR project development time
by computing the elapsed time between the first and last
deltas recorded for a given MR project. A Q-Q plot for
this data revealed that this variable was skewed to the
left. Several Box-Cox transformations were investigated,
and the log transformation gave the best approximation
to a normal distribution. A natural logarithm transforma-
tion of the performance measure was therefore employed
in our analysis. Because performance is improved when
development time is reduced, we reversed the sign of
this variable (by multiplying it by −1) to make it easier
to interpret results, i.e., higher values represent higher
levels of performance. Thus, positive regression coeffi-
cients represent positive effects on team performance.

Task Familiarity. Prior empirical studies have mea-
sured task familiarity simply as prior work experience
in a similar task (Littlepage et al. 1997, Reagans et al.
2005). To be effective in their work, software developers
need to understand the existing software product base
and the application domain in which the new software



Espinosa et al.: Familiarity, Complexity, and Team Performance
620 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

Table 1 Descriptive Statistics and Correlation Matrix

Variable Mean Std. dev. 1 2 3 4 5 6 7 8 9 10 11

1 Performance −2�90 1�86
2 Task familiarity 5�31 1�45 0�19
3 Team familiarity 1�80 2�95 0�21 0�39
4 Task size 1�15 3�42 −0�18 0�09 0�03
5 Structural complexity 3�50 4�44 −0�21 0�00 −0�02 0�14
6 Team size 2�42 0�88 −0�21 −0�03 −0�10 0�20 0�12
7 Geographic dispersion 0�10 0�29 −0�08 −0�01 −0�02 −0�03 0�03 0�05
8 Repairs 0�40 0�49 −0�13 0�00 0�06 0�00 0�02 0�04 0�08
9 MR project type 0�48 0�50 −0�22 −0�12 −0�15 0�09 0�19 0�19 −0�04 −0�03

10 System age 1�67 0�88 0�00 0�25 0�18 0�01 −0�04 −0�01 0�05 0�02 −0�12
11 MR project priority 2�76 0�78 0�17 0�04 0�04 −0�12 −0�16 −0�17 0�03 −0�05 −0�55 0�01
12 Effort distribution 0�71 0�16 0�28 0�09 0�09 −0�24 −0�19 −0�33 −0�06 −0�06 −0�17 0�00 0�18

Notes. r > 0�08 is significant at p < 0�001; r > 0�07 is significant at p < 0�01; r > 0�05 is significant at p < 0�05.

will operate (Boehm 1981, Brooks 1995, Curtis et al.
1988, Walz et al. 1993). Thus, consistent with simi-
lar measures of expertise used in prior software stud-
ies (Mockus and Herbsleb 2002), we measured task
familiarity by counting the number of deltas developed
for the subsystem by each team member prior to start-
ing work on the MR project, and then averaged this
count for the entire team. While we could have mea-
sured task familiarity at the module or file level, we used
the subsystem level because our data showed that these
developers generally work on different files and mod-
ules rather than building up expertise in a specific set
of files or modules. Furthermore, the developers in our
study had to be familiar with the subsystem as a whole
because the software task activities are highly interde-
pendent; developers must understand how their changes
in one file or module will affect other files, modules, and
the subsystem as a whole once all parts are integrated
and working together.1

Because some developers complete more deltas than
others for a given MR project, we computed a weighted
average for the team using the proportion of deltas com-
pleted by each team member in the MR project as the
weights. This weighting ensures that the task familiarity
experience of developers who completed more deltas in
the MR project counts more heavily than that of devel-
opers who completed fewer deltas. A Q-Q plot for this
data revealed that this variable was skewed to the left.
Several Box-Cox transformations were investigated and
the log transformation gave the best approximation to a
normal distribution, so we employed a natural logarithm
transformation of the task familiarity measure.

Team Familiarity. Team familiarity has been measured
as prior work experience with the same crew (Good-
man and Leyden 1991, Kanki and Foushee 1989), prior
knowledge of other team members (Gruenfeld et al.
1996, Harrison et al. 2003), and prior work experience
with the same teammates in similar prior tasks (Hinds
et al. 2000, Littlepage et al. 1997, Reagans et al. 2005).
Developers who have worked on the same software

projects will have more shared knowledge about the task
domain and about each other than those who have not.
Therefore, by counting the number of MRs in which
both members had developed code in the past, we first
calculated a member familiarity measure for each dyad
in each team based on the shared experience that those
two developers had with prior MRs. We then aggre-
gated these dyadic measures to the team level by aver-
aging the corresponding shared expertise measures for
all dyads that worked on the MR project. The intraclass
correlation (ICC) statistic for this variable was 0.745
(p < 0�001) indicating that aggregating to the team level
is appropriate (Kenny and LaVoie 1985).

Task Complexity

Task Size. We measured task size as the number of
thousands of lines of software instructions (i.e., software
code added, deleted, or changed) written for the MR. As
the software product was written in one programming
language, lines of code provides a reasonable measure
of software size. Naturally, we expect that more software
instructions will take longer to develop.

Structural Complexity. Structural complexity can be
evaluated by measuring characteristics that make soft-
ware difficult to understand and change (Curtis et al.
1979). As the number of modules affected increases,
it becomes more difficult to understand how the parts
being modified will affect other parts of the system
(Darcy et al. 2005, Herbsleb and Mockus 2003) which
increases the amount of information that developers need
to process to implement the MR, thus increasing its
complexity (Wood 1986). Therefore, we measured the
structural complexity of the task as the number of mod-
ules impacted by the MR. Because each delta affects a
single module, information about which modules were
affected by an MR is readily available in our data set.
We expect that more complex software will take longer
to develop because it requires more effort to compre-
hend and update the code (Banker et al. 1993, Banker
et al. 1998).



Espinosa et al.: Familiarity, Complexity, and Team Performance
Organization Science 18(4), pp. 613–630, © 2007 INFORMS 621

Team Coordination Complexity

Team Size. We measured team size as the number
of developers who completed deltas in the MR project.
Because MRs involve very technical and focused mod-
ifications, we expect that larger teams will be less effi-
cient at implementing the MR due to the increased need
for and difficulty of coordinating, thus taking longer to
finish the MR project.

Geographic Dispersion. Consistent with prior studies
of global software teams (Herbsleb and Grinter 1999,
Herbsleb and Mockus 2003) and because most MRs
were developed from either one or two locations (i.e.,
the United States and the United Kingdom), this variable
was dichotomized: 0 if all developers who completed
deltas in an MR project worked in the same location and
1 otherwise. Because our study involved only two sites,
our measure of dispersion is equivalent to others recom-
mended in the literature, such as counting the number
of sites represented in a team (O’Leary and Cummings
2007).2

Interaction Effects. We operationalized five interac-
tion variables necessary to test: the interactive effects of
task familiarity with the two task complexity variables
(task size and structural complexity); the interactive
effects of team familiarity with the two team coordi-
nation complexity variables (team size and geographic
dispersion); and the interactive effects of task familiar-
ity with team familiarity. Interaction variables are con-
structed by multiplying the respective main variables,
which works well when one of the variables in the inter-
action term is binary or has a few discrete values. How-
ever, when both variables are continuous, problems of
high multicollinearity can arise. Also, main effect coef-
ficients become difficult to interpret because they rep-
resent the value of their main effect when the value of
the other variable in the interaction term is zero (Jackard
and Turrisi 2003). This creates problems for variables
like “team size” that have no meaning when their value
is zero.
These difficulties are corrected by centering the de-

pendent variable and the continuous variables used in
interaction terms with respect to their means and using
these centered variables to construct the interaction
terms, which is particularly necessary for variables that
have no meaning when they assume a value of zero
(Aiken and West 1991). The coefficient of the centered
main effect variable represents the magnitude of the
main effect when the main variable is at its mean, which
has a more meaningful interpretation. We centered the
task familiarity variable because a task familiarity value
of zero has little meaning in our study; the vast major-
ity of the developers in our sample had developed deltas
in the past. Therefore, the coefficient on all main effect
variables that contain an interaction term with the task

familiarity variable represents their respective effects
when task familiarity is at its mean, and the respective
interaction terms represent how these effects change as
the task familiarity value departs from the mean. We did
not center the team familiarity variable because a value
of zero is of interest in our study and several teams had
no prior team familiarity coming into an MR project.
So the coefficient of all main variables that contain an
interaction term with team familiarity variable repre-
sents their respective effect when team members have
not worked together before, and the respective interac-
tion terms represent how these effects change as the team
familiarity value departs from zero.

Control Variables. We included five control variables
to account for other factors identified in the software
engineering literature that can affect software develop-
ment time: repairs, MR project type, system age, MR
project priority, and effort distribution within the MR
project team.

Repairs. Defective systems generally take longer to
enhance or modify because of the need to discover and
repair errors. Deltas in an MR project are recorded as
either new code or repair deltas. The percentage of repair
deltas in an MR is a good indicator of errors that were
found in the software during inspections and tests. The
“repair” variable was dichotomized because there were
many MRs with no repair deltas (165 MRs or 14.1%),
such that the variable was set to a value of 1 if the MR
contained more than 38.4% repair deltas (i.e., median
value) and 0 otherwise.

MR Project Type. When an MR project is opened, it
is classified as either new feature development or fea-
ture update. Update MRs modify the functionality of
an existing feature while new feature development MRs
add new functionality requested by clients or design
teams. New feature MRs have uncertainties associated
with understanding the requirements of a new product,
which will increase software development time. There-
fore, we control for project type using a binary variable
equal to one for new feature development MRs and zero
for feature update MRs.

System Age. We included a variable to control for the
effect of time-related factors on software development
performance (e.g., technology changes, management
changes, etc.). This control variable is also important
because the base software product has been growing
incrementally for over ten years as new features have
been added. We expect that it has become increasingly
difficult to integrate the new or updated features into the
product base as it has grown. Therefore, we control for
time effects using the time elapsed between the start of
the first MR project in the product (start date= 0) and
the current MR’s start date, measured in years. Higher
numbers represent an older product (i.e., more recent
MR projects).



Espinosa et al.: Familiarity, Complexity, and Team Performance
622 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

MR Project Priority. When the change control board
at the organization approves an MR project for imple-
mentation, it also assigns a priority level ranging from
1 to 4. Priority 1 is assigned to MRs that affect crit-
ical client services, whereas priority 4 is assigned to
MRs involving nuisance problems that need to be cor-
rected but can wait. Naturally, we need to control for MR
project priority because more critical MRs receive more
attention than lower priority MRs. We have reversed this
scale for ease of interpretation of results, such that 1 rep-
resents the lowest priority and 4 the highest; i.e., higher
values of this variable are associated with higher priority
levels.

Effort Distribution. We measured the distribution of
effort in an MR project team using a measure of even-
ness in the contribution of deltas to the project. An MR
project in which one developer does most of the cod-
ing may take longer than one in which every developer
contributes equally because the developers can work
in parallel and finish sooner. This variable was con-
structed using a Gini coefficient of homogeneity (Alker
and Russet 1964, Dorfman 1979, Watson and Finholt
1986), ranging between zero (one person develops all
deltas) and one (each developer contributes an equal
number of deltas).

Data Analysis and Results
We analyzed the data using ordinary least-squares regres-
sion methods. Our results are summarized in Table 2.

Table 2 Regression Model on Team Performance

Hypotheses

Baseline model +Familiarity vars + Interaction vars Effects

Variable Coefficient P -value Coefficient P -value Coefficient P -value Coll VIF No. Pred Result

Task size −0�044 0�003 −0�057 <0�001 −0�051 0�008 2�119
Structural complexity −0�043 <0�001 −0�046 <0�001 −0�066 <0�001 1�348
Team size −0�171 0�005 −0�157 0�008 −0�282 <0�001 1�714
Geographic dispersion −0�383 0�018 −0�344 0�029 −0�422 0�013 1�228
Repairs −0�322 0�001 −0�348 <0�001 −0�364 <0�001 1�038
MR project type −0�489 <0�001 −0�375 0�001 −0�303 0�009 1�532
System age −0�074 0�184 −0�182 0�001 −0�167 0�003 1�125
MR project priority 0�073 0�340 0�095 0�201 0�126 0�086 1�461
Effort distribution 2�000 <0�001 1�731 <0�001 1�594 <0�001 1�243

Task familiarity 0�163 <0�001 0�364 <0�001 3�351
Team familiarity 0�082 <0�001 0�182 <0�001 3�582

Task familiarity× task size 0�004 0�744 2�004 1 + n.s.
Task familiarity× structural complexity −0�047 <0�001 3�259 2 + Opposite
Team familiarity×geogr dispersion 0�104 0�012 1�503 3 + Supported
Team familiarity× team size 0�106 0�002 2�101 4 + Supported
Team familiarity× task familiarity −0�069 <0�001 3�802 5 + Opposite

N 1,110 1,110 1,110
Adjusted R2 0�151 0�197 0�225
R2 0�158 0�205 0�236
Change in R2 0�158 0�047 0�031
F test for change in R2 23�01 32�256 8�797
p-value of F test <0�001 <0�001 <0�001
Condition index (collinearity) 19�773 19�964 20�610

We inspected our model for multicollinearity by com-
puting a condition index (Belsley et al. 1980) for the
entire model and variance inflation factors (VIF) (Mar-
quardt 1970) for each of the independent variables (see
collinearity statistics in Table 2). We also conducted
Durbin-Watson’s test for autocorrelation and White’s test
for heteroskedasticity (Greene 1997, Kennedy 1992).
None of these tests revealed any diagnostic problems.

Hierarchical Regression
Consistent with standard practice for analyzing models
with interaction effects (Aiken and West 1991, Cohen
and Cohen 1983), variables were entered in the regres-
sion model in blocks in a hierarchical fashion. A hier-
archical regression model helps us evaluate whether
the familiarity and interaction variables add significant
explanatory power to the model incrementally over all
other variables. Therefore, we included only task com-
plexity, team coordination complexity, and control vari-
ables in the “baseline model.” We then entered the
familiarity variables into the “familiarity model,” which
significantly increased the explanatory power of the
regression model (�R2 = 0�047, FR2 Change = 32�256, p <
0�001), suggesting that team and task familiarity help
explain significant variance in team performance incre-
mentally over what task complexity, team coordination
complexity, and control variables explain. Finally, we
entered all the interaction variables into the “interaction
model,” which further increased the predictive power of
the regression model (�R2 = 0�031, FR2 Change = 8�979,



Espinosa et al.: Familiarity, Complexity, and Team Performance
Organization Science 18(4), pp. 613–630, © 2007 INFORMS 623

p < 0�001), suggesting that the interaction variables
explain significant variation in team performance over
that explained by the familiarity and other variables.

Results of Baseline Model
The results of the baseline model show that the effects
of all control variables were generally as expected, pro-
viding some assurance of the validity of our model.
MRs that contained a higher proportion of repair deltas
were associated with reduced performance (�=−0�322,
p < 0�001), i.e., took longer to develop, most likely
because it takes more time to identify, analyze, and
correct errors in the system. Similarly, new feature
development MRs had lower performance (�=−0�489,
p < 0�001). As noted earlier, this effect is likely due to
the added difficulty of learning, understanding, and incor-
porating new system and client requirements related to
these new features. Also, an even distribution of devel-
opment effort within the MR project team was associ-
ated with higher performance (� = 2�000, p < 0�001)
because software is developed faster when the develop-
ers work in parallel than when one or two developers do
the majority of the work. We found no effect of system
age and MR project priority on software development
time in the baseline model but, as we discuss later, these
effects became significant once the familiarity and inter-
action variables were entered into the model. Our results
show that task complexity also had a main effect on per-
formance. As expected, we found that MR projects that
develop larger (�=−0�044, p= 0�003) and more struc-
turally complex software (�=−0�043, p < 0�001) were
associated with reduced performance. Similarly, both
team coordination complexity variables had a main effect
on performance. Team size (�=−0�171, p= 0�005) and
geographic dispersion (� = −0�383, p = 0�018) were
associated with reduced performance.

Results of the Familiarity Model
Except for system age, the direction and significance of
the coefficients on the other variables in the baseline
model did not change substantially when the familiar-
ity variables were added. The effect of system age on
performance in the baseline model was negative but non-
significant; it became significant in the familiarity model
(�=−0�182, p = 0�001), indicating that for given lev-
els of task and team familiarity, more recent MRs are
associated with lower performance. The results of the
familiarity model also show that task familiarity had a
significant effect on software development time. Both
task familiarity (�= 0�163, p < 0�001) and team famil-
iarity (� = 0�082, p < 0�001) had a positive effect on
performance. This result provides some assurance of the
validity of our measures and results because they are
consistent with prior findings in familiarity research.

Results of Interaction Model
The direction and significance of all coefficients did not
change substantially when the interaction variables were
added to the familiarity model. Only the effect of MR
project priority changed slightly, becoming marginally
significant (� = 0�126, p = 0�086) and in the expected
direction, indicating that higher priority MRs are asso-
ciated with higher levels of performance. The interac-
tion effects are illustrated in Figure 2.3 With respect to
the interactive effects of task familiarity and task com-
plexity, we found, contrary to our expectations, that the
effect of task familiarity on performance was unaffected
by task size. Therefore, Hypothesis 1 was not supported.
For Hypothesis 2, while we found that the effect of task
familiarity on performance was affected by structural
complexity (� = −0�047, p < 0�001), the sign of the
coefficient on the interaction effect was in a direction
opposite from our expectation. As Figure 2(a) illustrates,
the positive effect of task familiarity on performance was
stronger for tasks with lower structural complexity.
On the other hand, we did find that the effect of team

familiarity on team performance was enhanced when
team coordination complexity was higher, supporting
Hypotheses 3 and 4. Team familiarity improved perfor-
mance more strongly with larger teams (�= 0�106, p=
0�002) and with geographically dispersed teams (� =
0�104, p = 0�012), who took an average of 97.3 days
to implement MRs compared with 48.2 days for colo-
cated teams. As illustrated in Figures 2(b) and 2(c), the
difference in performance between colocated and geo-
graphically dispersed and between small and large teams
narrowed substantially as team familiarity increased.
Finally, as we hypothesized, we found that team famil-
iarity and task familiarity had a significant interaction
effect on team performance (� = −0�069, p < 0�001).
However, this effect was in the opposite direction from
our expectation, so Hypothesis 5 was not supported. As
Figure 2(d) illustrates, the performance differential for
teams with high task familiarity relative to teams with
low task familiarity diminished substantially as team
familiarity increased and vice versa, suggesting that the
effects of task and team familiarity are more substitutive
than complementary.

Discussion
Our study represents an important and original contribu-
tion to the research literature on organizational team per-
formance and familiarity by providing insight into how
familiarity complements or offsets aspects of task com-
plexity for distributed teamwork. Consistent with prior
research on software engineering (Boehm 1981, Brooks
1995, Curtis et al. 1988, Walz et al. 1993) and familiarity
(Harrison et al. 2003, Littlepage et al. 1997), our find-
ings confirmed that both task and team familiarity had
positive effects on performance. It is noteworthy that our



Espinosa et al.: Familiarity, Complexity, and Team Performance
624 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

Figure 2 Interaction Diagrams

Interaction plot task familiarity × structural complexity

–2.70

–2.70

–2.70

–2.60

–2.50

–2.50

–2.50

–2.40

–2.20

–2.10

–2.10

–2.10

–2.00

–1.90

–1.90

–1.90

–1.80

–1.70

–1.70

0.01 0.87 1.73 2.60 3.46 0.01 0.87 1.73 2.60 3.46

Task familiarity

P
er

fo
rm

an
ce

 =
 –

L
N

 M
R

 d
ev

 t
im

e Low structural complexity

High structural complexity

Interaction plot team familiarity × geographic dispersion

Team familiarity

P
er

fo
rm

an
ce

 =
 –

L
N

 M
R

 d
ev

 t
im

e

Colocated
Distributed

Interaction plot team familiarity × team size

–3.30

–3.30

–3.10

–3.10

–3.10

–2.90

–2.90

–2.90

–2.70

–2.50

–2.30

–2.10

–1.90

0.01 0.87 1.73 2.60 3.46

Team familiarity

P
er

fo
rm

an
ce

 =
 –

L
N

 M
R

 d
ev

 t
im

e Low team size
High team size

Interaction plot task familiarity × team familiarity

0.01 0.87 1.73 2.60 3.46

Team familiarity

P
er

fo
rm

an
ce

 =
 –

L
N

 M
R

 d
ev

 t
im

e Low task familiarity

High task familiarity

–2.30

–2.30

–2.30

(a) (b)

(c)
(d)

findings are the first to reinforce this empirical evidence
with organizational teams and objective data sources.
Perhaps the most significant contribution of our study
is a better understanding about how different dimen-
sions of familiarity and complexity interact with each
other such that when a given dimension is excessive or
absent, team members can resort to other dimensions to
attain high levels of performance. Our findings provide
evidence that when teams face complexity in a partic-
ular dimension of their work, they can resort to team
familiarity to reduce the subjective complexity they will
experience when working with each other. For exam-
ple, team members can increase their familiarity with
each other to reduce their coordination complexity. In
addition, when team members lack team familiarity they
can resort to task familiarity to get the work done and
vice versa. However, our results show that the inherent
complexity of certain tasks is irreducible, such that the
beneficial effects of increased task familiarity experience
diminishing returns when task complexity increases. We
elaborate on these findings below.
Task familiarity had mixed interactive effects with

task complexity. Contrary to our expectations, the effect
of task familiarity on team performance was unaffected
by task size. One possible explanation may be that there

are inherent complexities in software tasks associated
with the size of the software product and these com-
plexities are irreducible. Therefore, as the size of the
task increases, software development time increases pro-
portionally and, as task familiarity increases, software
development time decreases proportionally, but there are
no dramatic productivity improvements possible to com-
pensate for increased software product size that can
be attributed to task familiarity. Furthermore, because
large-scale software development organizations often use
configuration management tools to archive the software
components created and to document technical issues
about the software modifications (Grinter 2000), larger
software tasks may not necessarily benefit from addi-
tional task familiarity because much of the technical
information that developers may need is readily avail-
able in these tools.
Also contrary to our expectations, and as Figure 2(a)

illustrates, we found that task familiarity helped reduce
task completion time more strongly for tasks with lower
structural complexity. While developing more complex
software that spans more modules still takes longer than
developing simpler software spanning fewer modules,
dramatic productivity improvements do not appear pos-
sible for more structurally complex tasks through task



Espinosa et al.: Familiarity, Complexity, and Team Performance
Organization Science 18(4), pp. 613–630, © 2007 INFORMS 625

familiarity alone; perhaps more specialized expertise in
particular domains, functions, or technologies may also
be necessary. Our results suggest that a unit of familiarity
increase has a stronger impact on structurally simpler
tasks, perhaps because the experience gained from repe-
tition can have dramatic performance benefits. However,
as the structural complexity of the task increases to irre-
ducible levels, higher task familiarity alone can not yield
dramatic improvements in performance.
To further explore this issue, we split the sample at

the median value of task familiarity into high and low
task familiarity groups and conducted an analysis of
variance for various variables. We found that high task
familiarity teams worked on larger software (F1�1287 =
14�420, p < 0�001) affecting more files (F1�1287 = 7�659,
p = 0�006). They also tended to work more on feature
updates than new features (F1�1287 = 6�836, p = 0�009).
High and low task familiarity groups worked on MRs
spanning a roughly similar number of modules, i.e., sim-
ilar structural complexity. So, when structural complex-
ity increases in the high task familiarity groups who
often work on larger software and feature updates, the
positive effect of their task familiarity may diminish
because the problems they face may require more inno-
vation and critical thinking than business as usual. At the
same time, when structural complexity increases in the
low familiarity groups who often work on smaller soft-
ware that adds new functionality, the positive effect of
their task familiarity may experience diminishing returns
because it is less relevant for the understanding of new
requirements.
These possible explanations suggest that the effect of

task familiarity on performance may be moderated more
by the source or type of complexity than by the level
of complexity. For example, the complexities inherent
in the existing product base may be adequately handled
by developers who are familiar with the software, but
if the complexity comes from sources external to the
existing code (e.g., new regulations, new client require-
ments, new technologies), then task familiarity with the
current subsystem may actually hinder the developers’
ability to innovate. This explanation would be consis-
tent with prior findings in experimental studies of task
experience and organizational learning, suggesting that
simpler tasks that require less innovation are more pos-
itively affected by task experience because this knowl-
edge is more applicable to similar simple tasks (Argote
et al. 1995). We speculate that the developers’ expertise
in areas other than the current subsystem (e.g., functional
expertise with other software or with other technologies)
may help more with complex software than does general
task domain familiarity.
With respect to team coordination complexity, we

found that geographic dispersion and team size had
a negative effect on performance, which is consis-
tent with prior research on distributed software teams

(Carmel 1999, Herbsleb and Mockus 2003), virtual
teams (Armstrong and Cole 2002), and software devel-
opment (Brooks 1995). Consistent with our expectation,
we also found that team familiarity helped to miti-
gate these negative effects. As illustrated in Figure 2(b),
team familiarity helped narrow the performance differ-
ence between colocated and geographically dispersed
teams. When teammates are familiar with each other,
regardless of location, they know whom to contact for
answers to their questions and they may obtain coop-
eration and responses to their queries more quickly.
Without familiarity, geographically dispersed team mem-
bers need to bridge distance and technology-mediated
boundaries (Hinds and Bailey 2003) to coordinate their
work in some other way, making it more difficult to
work together because they do not enjoy the benefits of
copresence—e.g., presence awareness, frequent commu-
nication, and contextual reference.
As illustrated in Figure 2(c), team familiarity also

helped narrow the difference in performance between
small and large teams. This finding is important because
the literature suggests mixed effects of team size on
performance. On one hand, more members help per-
formance because they represent additional produc-
tive resources in the team. On the other hand, larger
teams cause increased coordination overhead due to
the exponentially larger number of possible interaction
links between members, which can hurt performance,
i.e., Brooks’ “man month” myth (1995). Our results
show conclusively that, all else being equal, team size
decreases performance when team members are not
familiar with each other. However, familiarity mitigates
the negative effect of team size on performance. By the
same token, our results show that team familiarity is not
as important with small teams but becomes critical as
team size increases. In sum, the stronger effect of team
familiarity on performance for geographically dispersed
and larger organizational teams supports our expectation
that team familiarity is more beneficial with higher team
coordination complexity in which it is more difficult to
interact, coordinate, and share information.
Contrary to our expectations, we found that team and

task familiarity are substitutive, not complementary in
their effects on team performance. As Figure 2(d) shows,
task and team familiarity are both beneficial for perfor-
mance but when one type of familiarity is lacking, the
effect of the other type of familiarity is much stronger.
Conversely, as either type of familiarity increases, the
effect of the other type of familiarity becomes less
powerful, suggesting that these two types of familiar-
ity are somewhat substitutable. This finding represents
an important contribution to the literature on transactive
memory. Recent research has theorized that in order for
transactive memory to be effective, team members need
to have knowledge about three things: the task (what
needs to be done), what type of expertise is required to



Espinosa et al.: Familiarity, Complexity, and Team Performance
626 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

perform the task, and the people in the team who possess
those skills (Brandon and Hollingshead 2004). However,
this body of research is not clear about whether knowl-
edge of the task and the team complement or substitute
for each other, or if their respective effects are simply
additive. Our findings suggest that when team members
have more task familiarity and more team familiarity,
performance increases but at a diminishing rate. These
results provide empirical evidence that task expertise and
directory structure (i.e., knowledge of where to locate
this expertise within the team) are both important for
performance, but that they appear to substitute for each
other as either type of knowledge increases. In other
words, having more task expertise makes one less depen-
dent on colleagues, whereas having a broad knowledge
of who knows what makes one less dependent on task
expertise.
One possible explanation for this result is that deeper

levels of familiarity with a shared task may provide team
members with knowledge schemas that help them antic-
ipate more accurately how the task will progress and
what other team members will be doing. This knowl-
edge will help them to coordinate implicitly and make
team familiarity less important. Similarly, deeper lev-
els of team familiarity help team members understand
who knows what in the team, thus helping them special-
ize and figure out where task expertise is located when
needed, and thus making them less dependent on their
own task knowledge. In contrast, team members who are
not very familiar with the task will benefit more from
team familiarity because it gives them common ground
and common context, helping them interact more effec-
tively and locate and access expertise when needed.
Our results have strong implications for organiza-

tional teamwork because they demonstrate that dramatic
improvements in productivity are not possible through
task familiarity alone because high levels of task com-
plexity appear to be irreducible, so further investments
in task experience can only go so far. Furthermore, as
team familiarity increases, task familiarity becomes less
important because of their substitutive effects. At the
same time, team familiarity can have dramatic effects
in productivity by reducing the subjective team coor-
dination complexity experienced by its members when
working together on a task, particularly for larger and
more geographically dispersed teams.
Finally, our study also underscores one general but

important methodological issue in familiarity research:
Task familiarity can be measured at different levels, but
the task familiarity that really matters is that which can
be transferred to subsequent tasks. In our study, famil-
iarity with the same files or modules being modified was
not as important as familiarity with the entire subsystem
because developers worked more often in different files
and modules. The interdependent nature of this software
task required developers to understand how their changes

in one file or module affect other files and modules in
the subsystem. Thus, the familiarity relevant for the task
was with the subsystem.

Conclusions
Our study makes evident the importance of investigating
interaction effects in organizational teams and familiarity
research. In this study, we have hypothesized and empir-
ically evaluated how task and team familiarity inter-
act with task and team coordination complexity in their
effect on team performance. Our results show that while
familiarity is generally beneficial for performance, it can
also complement or offset different elements of complex
work environments. Analyzing each of these dimensions
separately, we first found that both types of familiar-
ity have positive effects on performance. We also found
that all dimensions of complexity had negative effects on
performance. Both of these findings are consistent with
intuition and prior research.
When theorizing about the interaction effects between

familiarity and complexity, prior research has argued
that familiarity helps performance more when tasks are
more complex, but the empirical evidence suggests the
opposite because less familiar team members are able
to innovate and attain higher levels of performance with
complex tasks (Argote et al. 1995). Our study delves
deeper into different dimensions of familiarity and com-
plexity and helps resolve these contradictory findings.
We studied two important types of familiarity—task
and team familiarity; we decomposed task complexity
into two components—task size and structural complex-
ity; and then we incorporated a new dimension called
“team coordination complexity,” representing the addi-
tional complexity that needs to be taken into account
when the task is carried out collaboratively. We decom-
posed this into two components—team size and geo-
graphic dispersion. When we analyzed the interaction
effects of task familiarity with task complexity, we found
that our results were similar to prior research for struc-
tural complexity—task familiarity is more beneficial for
less structurally complex tasks. However, we found no
interaction effect with task size. These results suggest
that when experienced professionals work on large orga-
nizational tasks, these tasks take longer to complete but
they are somewhat indivisible in the sense that further
task experience does not help offset the negative effects
of task size. On the other hand, consistent with intu-
ition, team familiarity does help teams offset the nega-
tive effect of team size and dispersion, suggesting that
investments made to develop team familiarity (e.g., fre-
quent trips to each other’s sites, forming teams with
members that have worked together, implementing tech-
nologies like video conferencing that foster team famil-
iarity) do pay off.
Finally, the substitutive effect of team and task famil-

iarity on performance represents an intriguing finding,



Espinosa et al.: Familiarity, Complexity, and Team Performance
Organization Science 18(4), pp. 613–630, © 2007 INFORMS 627

which tells us that for transactive memory to be effec-
tive, teams need to develop both team and task famil-
iarity. At the same time, our findings suggest that the
benefits of both types of familiarity are substitutable and
that their joint effects experience diminishing returns as
both types of familiarity increase.
Our study has some limitations. First, it was con-

ducted in a single organization. Although this focused
research design mitigates or eliminates potential con-
founds and increases the internal validity of our results,
they may be bound to the idiosyncrasies of this organi-
zation. The findings could be limited to software organi-
zations working on very large products that are updated
incrementally and may not extend to other software
products and other development methods. Further stud-
ies are needed to validate our findings in other contexts.
Also, our familiarity measures are obtained from soft-
ware production records; while the objective data are not
subject to the biases and limitations of subjective mea-
sures, the data do not measure psychological attitudes
and aspects of team processes.
While our findings are limited to software teams, we

believe that they could generalize to other collaborative,
intellectual, and technical tasks involving knowledge
workers and containing highly interdependent activities
with varying degrees of complexity. Generally speaking,
our findings about the interactive effects of task famil-
iarity should be generally applicable to other types of
knowledge work like design engineering, requirements
analysis, and technical product development in which
increased task complexity can be tackled by innovating
rather than by doing more of the same, whereas sim-
ple tasks can benefit from more experience with similar
tasks. Our findings may not necessarily generalize to
tasks in which the application of knowledge acquired in
prior tasks and task experience acquired from repetition
may be more critical than innovation, such as emergency
work and other fast-paced real-time tasks in which there
is not much time to innovate. On the other hand, we
believe that our findings about the interactive effects of
team familiarity are more generally applicable to a wider
range of tasks because prior experience with other team
members will help members coordinate their work with
larger teams and across geographic boundaries.
Finally, the team familiarity dimension in our study

only considers familiarity with team members and not
familiarity with roles. Our sample only included one
role—software developer—and developers in our study
context are thoroughly familiar with this role. Further
studies need to be conducted to better understand the
effects of familiarity with expert roles and how these
effects may interact with task and team familiarity and
complexity.

Acknowledgments
The authors would like to thank Audris Mockus, F. Javier
Lerch, Linda Argote, Ann Majchrzak, and Mildred F. Myers

Appendix. Summary of Variable Measures,
Hypotheses, and Results

Variable Measure

Performance Length of time to complete an error-free MR
project, reversed to measure performance,
and log transformed for normality

Task familiarity Average number of deltas completed by team
members, not including the current MR,
weighted by the proportion of deltas
contributed by each member to the current
MR, log transformed for normality

Team familiarity Average number of MRs in which each dyad
worked together, not including the current
MR, averaged for all dyads in the team

Task size Thousands of lines of software code added,
changed, or deleted in the MR

Structural
complexity

Number of modules affected by the MR

Team size Number of developers who contributed deltas
to the MR

Geographic
dispersion

1 if the team included members from two
locations and 0 if all members were
colocated

Repairs 1 if the MR contains more repair deltas than the
median and 0 otherwise

MR project type 1 if the MR was opened to implement new
features and 0 if opened to update existing
features

System age Elapsed time between the start of the first
MR project in the system (start date= 0)
and the current MR’s start date, measured
in years

Priority Implementation priority level assigned by the
change control board, from 1 (i.e., a
nusisance problem) to 4 (top priority
affecting critical client services)

Effort distribution Gini coefficient of homogeneity, from 0 (one
developer develops all deltas) to 1 (all
developers contribute an equal number of
deltas)

for their most valuable advice and guidance at various stages
of this research project. They would also like to thank the
reviewers for their excellent feedback and suggestions during
the review process.

Endnotes
1We investigated two additional measures of task familiarity
at a more microlevel, one for file familiarity and one for mod-
ule familiarity based on the number of deltas written in the
respective file and module. On average, a developer had a task
familiarity of 55.3 deltas with the entire subsystem. Also, on
average, a developer had modified 5.8 modules in this subsys-
tem and had written 19.0 deltas in the same module as the
one in the delta being modified. Finally, on average, a devel-
oper had modified 28.1 files in the subsystem and had written
3.0 deltas in the same file as the one being modified in that
delta. These numbers suggest that developers often have little
familiarity with the particular files they are modifying. At the



Espinosa et al.: Familiarity, Complexity, and Team Performance
628 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

same time, developers have some familiarity with the mod-
ules they are updating but they have even more familiarity
with other modules. While a familiarity of 19.0 deltas with
the module being modified is an important component of task
familiarity, the developer’s familiarity with the remaining 4.8
modules (i.e., 5.8 minus 1) represents important application
domain familiarity that needs to be taken into account, which
is consistent with the findings of Reagans et al. (2005) that
familiarity with other tasks that are related to the current task
matters. We further analyzed these alternative measures and
found that although these variables are correlated with our cur-
rent task familiarity measure (r = 0�234, p < 0�001 with same
files and r = 0�414, p < 0�001 with same modules), neither
of these variables had significant main effects on team perfor-
mance, suggesting that task familiarity at the subsystem level
has more predictive power.
2We contemplated using a continuous measure of dispersion
based on the proportion of distributed dyads in the team, but
decided against it because more than half of the values would
have been truncated at zero (i.e., when all members were colo-
cated), thus presenting other analytical challenges. Further-
more, this continuous variable was highly correlated with our
binary variable (r = 0�709, p < 0�001) so the results would be
quite similar, but binary variables facilitate the interpretation
of interaction effects (Aiken and West 1991).
3Interaction diagrams are appropriate to illustrate interaction
effects of a continuous variable with one binary variable
because the slope of the continuous variable in the regression
diagram can be shown as two separate values, one when the
binary variable takes a value of zero and another when the
binary variable takes value of one. However, when both vari-
ables in the interaction term are continuous, these diagrams are
less useful because the slope of one of the variables changes
for every (continuous) value of the other variable (Aiken and
West 1991). This is further complicated when the regression
model is multivariate. However, the interaction effect can be
illustrated by splitting the data at the median of each con-
tinuous variable and creating binary variables for the respec-
tive high and low values, and by keeping all other variables
not included in the interaction term constant at their means.
The diagrams in Figure 2 were constructed using this method
for illustration purposes only. The upper and lower values of
the respective variables represent the means of the continu-
ous variable in the upper and lower side of the median split,
respectively.

References
Aiken, L., S. West. 1991. Multiple Regression: Testing and Interpret-

ing Interactions. Sage, Newbury Park, CA.

Alavi, M., D. E. Leidner. 2001. Knowledge management and knowl-
edge management systems: Conceptual foundations and research
issues. MIS Quart. 25(1) 107–136.

Alker, H., M. Russet. 1964. On measuring inequality. Behavioral Sci.
9(3) 207–218.

Allen, T. 1977. Managing the Flow of Technology. MIT Press,
Cambridge, MA.

Argote, L., C. A. Insko, N. Yovetich, A. A. Romero. 1995. Group
learning curves: The effects of turnover and task complexity on
group performance. J. Appl. Soc. Psych. 25(6) 512–529.

Armstrong, D. J., P. Cole. 2002. Managing distances and differences
in geographically distributed work groups. P. Hinds, S. Kiesler,
eds. Distributed Work. MIT Press, Cambridge, MA, 187–215.

Banker, R. D., S. A. Slaughter. 2000. The moderating effects of
structure on volatility and complexity in software enhancement.
Inform. Systems Res. 11(3) 219–240.

Banker, R., S. Dattar, C. Kemerer. 1993. Software complexity and
software maintenance costs. Comm. ACM 36(11) 81–94.

Banker, R., G. Davis, S. A. Slaughter. 1998. Software development
practices, software complexity, and software maintenance per-
formance: A field study. Management Sci. 44(4) 433–450.

Belsley, D., E. Kuh, R. Welsch. 1980. Regression Diagnostics: Identi-
fying Influential Data and Sources of Collinearity. John Wiley &
Sons, New York.

Boehm, B. R. 1981. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ.

Brandon, D. P., A. Hollingshead. 2004. Transactive memory systems
in organizations: Matching tasks, expertise, and people. Organ.
Sci. 15(6) 633–644.

Brooks, F. 1995. The Mythical Man-Month: Essays on Software Engi-
neering, anniversary ed. Addison-Wesley, Reading, MA.

Campbell, D. J. 1988. Task complexity: A review and analysis. Acad.
Management Rev. 13(1) 40–52.

Cannon-Bowers, J. A., E. Salas, S. Converse. 1993. Shared mental
models in expert team decision-making. J. Castellan, ed. Indi-
vidual and Group Decision-Making: Current Issues. Lawrence
Erlbaum Associates, Inc., Hillsdale, NJ, 221–246.

Carmel, E. 1999. Global Software Teams. Prentice-Hall, Upper Saddle
River, NJ.

Cohen, J., P. Cohen. 1983. Applied Multiple Regression/Correlation
Analysis for the Behavioral Sciences. Lawrence Erlbaum Asso-
ciates, Inc., Hillsdale, NJ.

Cohen, S. G., D. E. Bailey. 1997. What makes teams work: Group
effectiveness research from the shop floor to the executive suite.
J. Management 23 239–290.

Cohen, S. G., C. B. Gibson. 2003. In the beginning: Introduction
and framework. S. G. Cohen, C. B. Gibson, eds. Virtual Teams
that Work: Creating Conditions for Virtual Team Effectiveness.
Jossey-Bass, San Francisco, CA, 1–13.

Cramton, C. D. 2001. The mutual knowledge problem and its conse-
quences for dispersed collaboration. Organ. Sci. 12(3) 346–371.

Crowston, K., E. E. Kammerer. 1998. Coordination and collective
mind in software requirements development. IBM Systems J.
37(2) 227–245.

Curtis, B., H. Krasner, N. Iscoe. 1988. A field study of the soft-
ware design process for large systems. Comm. ACM 31(11)
1268–1286.

Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst, T. Love. 1979.
Measuring the psychological complexity of software mainte-
nance tasks with the Halstead and Mccabe metrics. IEEE Trans.
Software Engrg. 5(2) 96–104.

Darcy, D. P., C. F. Kemerer, S. A. Slaughter, J. E. Tomayko. 2005. The
structural complexity of software: An experimental test. IEEE
Trans. Software Engrg. 31(11).

Dorfman, R. 1979. A formula for the Gini coefficient. Rev. Econom.
Statist. 61 146–156.

Espinosa, J. A., J. N. Cummings, J. M. Wilson, B. M. Pearce. 2003.
Team boundary issues across multiple global firms. J. Manage-
ment Inform. Systems 19(4) 157–190.



Espinosa et al.: Familiarity, Complexity, and Team Performance
Organization Science 18(4), pp. 613–630, © 2007 INFORMS 629

Faraj, S., L. Sproull. 2000. Coordinating expertise in software devel-
opment teams. Management Sci. 46(12) 1554–1568.

Gittell, J. H. 2001. Supervisory span, relational coordination,
and flight departure performance: A reassessment of post-
bureaucracy theory. Acad. Management J. 12(4) 468–483.

Goodman, P. S., S. Garber. 1988. Absenteeism and accidents in a
dangerous environment: Empirical analysis of underground coal
mines. J. Appl. Psych. 73(1) 81–86.

Goodman, P. S., D. P. Leyden. 1991. Familiarity and group produc-
tivity. J. Appl. Psych. 76(4) 578–586.

Goodman, P. S., S. Shah. 1992. Familiarity and work group outcomes.
S. Worchel, W. Wood, J. A. Simpson, eds. Group Processes and
Productivity. Sage Publications, Newbury Park, CA, 578–586.

Greene, W. 1997. Econometric Analysis. Prentice-Hall, Upper Saddle
River, NJ.

Griffith, T. L., J. E. Sawyer, M. A. Neale. 2003. Virtualness and
knowledge in teams: Managing the love triangle of organiza-
tions, individuals, and information technology. MIS Quart. 27(2)
265–287.

Grinter, R. E. 2000. Workflow systems: Occasions for success and
failure. Comput. Supported Cooperative Work 9 189–214.

Gruenfeld, D. H., E. A. Mannix, K. Y. Williams, M. A. Neale. 1996.
Group composition and decision making: How member familiar-
ity and information distribution affect process and performance.
Organ. Behav. Human Decision Processes 67(1) 1–15.

Hackman, R. 1987. The design of work teams. J. Lorsch, ed. Hand-
book of Organizational Behavior. Prentice-Hall, Englewood
Cliffs, NJ.

Harrison, D. A., S. Mohammed, J. E. McGrath, A. T. Florey,
S. W. Vanderstoep. 2003. Time matters in team performance:
Effects of member familiarity, entrainment, and task discontinu-
ity on speed and quality. Personnel Psych. 56(3) 633–669.

Herbsleb, J. D., R. E. Grinter. 1999. Architectures, coordination,
and distance: Conway’s law and beyond. IEEE Software 16(5)
63–70.

Herbsleb, J. D., A. Mockus. 2003. An empirical study of speed and
communication in globally distributed software development.
IEEE Trans. Software Engrg. 29(6) 481–494.

Hinds, P., M. Mortensen. 2005. Understanding conflict in geographi-
cally distributed teams: The moderating effects of shared iden-
tity, shared context, and spontaneous communication. Organ.
Sci. 16(3) 290–307.

Hinds, P., S. Weisband. 2003. Knowledge sharing and shared under-
standing in virtual teams. S. G. Cohen, C. B. Gibson, eds. Virtual
Teams that Work: Creating Conditions for Virtual Team Effec-
tiveness. Jossey-Bass, San Francisco, CA, 21–36.

Hinds, P. J., D. E. Bailey. 2003. Out of sight, out of synch:
Understanding conflict in distributed teams. Organ. Sci. 14(6)
615–632.

Hinds, P. J., K. M. Carley, D. Krackhardt, D. Wholey. 2000. Choos-
ing work group members: Balancing similarity, competence,
and familiarity. Organ. Behav. Human Decision Processes 81(2)
226–251.

Jackard, J., R. Turrisi. 2003. Interaction Effects in Multiple Regres-
sion. Sage Publications, London, UK.

Kanki, B. G., H. C. Foushee. 1989. Communication as group pro-
cess mediator of aircrew performance. Aviation, Space, Environ.
Medicine 60(5) 402–410.

Katz, R. 1982. The effects of group longevity on project communica-
tion and performance. Admin. Sci. Quart. 27 81–104.

Kemerer, C. 1995. Software complexity and software maintenance: A
survey of empirical research. Ann. Software Engrg. (1) 1–22.

Kemerer, C., S. A. Slaughter. 1999. An empirical approach to studying
software evolution. IEEE Trans. Software Engrg. 25(4) 1–17.

Kennedy, P. 1992. A Guide to Econometrics. MIT Press, Cambridge,
MA.

Kenny, D. A., L. LaVoie. 1985. Interpersonal relations and group
processes. J. Personality Soc. Psych. 48(2) 339–348.

Kiesler, S., J. N. Cummings. 2002. What do we know about prox-
imity in work groups? A legacy of research on physical dis-
tance. P. Hinds, S. Kiesler, eds. Distributed Work. MIT Press,
Cambridge, MA, 57–80.

Kirkman, B. L., J. Mathieu. 2005. The dimensions and antecedents
of team virtuality. J. Management 31(5) 1–19.

Klimoski, R. J., S. Mohammed. 1994. Team mental model: Construct
or metaphor. J. Management 20(2) 403–437.

Kraut, R. E., L. A. Streeter. 1995. Coordination in software develop-
ment. Comm. ACM 38(3) 69–81.

Lewis, K. 2003. Measuring transactive memory systems in the
field: Scale development and validation. J. Appl. Psych. 88(4)
587–604.

Lewis, K., D. Lange, L. Gillis. 2005. Transactive memory systems,
learning and learning transfer. Organ. Sci. 16(6) 581–598.

Liang, D., R. Moreland, L. Argote. 1995. Group versus individual
training and group performance: The mediating role of transac-
tive memory. Personality Soc. Psych. Bull. 21 384–393.

Littlepage, G., W. Robison, K. Reddington. 1997. Effects of task
experience and group experience on group performance, mem-
ber ability, and recognition of expertise. Organ. Behav. Human
Decision Processes 69(2) 133–147.

Malone, T., K. Crowston. 1994. The interdisciplinary study of coor-
dination. ACM Comput. Surveys 26(1) 87–119.

Mann, C. C. 2002. Why software is so bad. Tech. Rev. 105(5)
33–38.

Marquardt, D. W. 1970. Generalized inverses, ridge regression, biased
linear estimation, and non-linear estimation. Technometrics 12
591–612.

McGrath, J. 1991. Time, interaction and performance (tip). Small
Group Res. 22(2) 147–174.

Mockus, A., J. D. Herbsleb. 2002. Expertise browser: A quantitative
approach to identifying expertise. 24th Internat. Conf. Software
Engrg., Orlando, FL.

O’Leary, M. B., J. N. Cummings. 2007. The spatial, temporal, and
configurational characteristics of geographic dispersion in teams.
MIS Quart. Forthcoming.

Olson, G. M., J. S. Olson. 2000. Distance matters. Human-Comput.
Interaction 15(1) 139–179.

Perry, D. E., N. A. Staudenmayer, L. G. Votta. 1994. People,
organizations, and process improvement. IEEE Software 11(4)
36–45.

Powell, A., G. Piccoli, B. Ives. 2004. Virtual teams: A review of
current literature and directions for future research. Data Base
Adv. Inform. Systems 35(1) 6–36.

Reagans, R., L. Argote, D. Brooks. 2005. Individual experience and
experience working together: Predicting learning rates from
knowing who knows what and knowing how to work together.
Management Sci. 51(6) 869–881.

Simon, H. A. 1955. A behavioral model of rational choice. Quart. J.
Econom. 69(1) 99–118.



Espinosa et al.: Familiarity, Complexity, and Team Performance
630 Organization Science 18(4), pp. 613–630, © 2007 INFORMS

Simon, H. A. 1996. The Sciences of the Artificial. MIT Press,
Cambridge, MA.

Sproull, L., S. Kiesler. 1991. Connections: New Ways of Working in
the Networked Organization. MIT Press, Cambridge, MA.

Stasser, G., D. D. Stewart, G. W. Wittenbaum. 1995. Expert roles
and information exchange during discussion: The importance
of knowing who knows what. J. Experiment. Soc. Psych. 31
244–265.

Steiner, I. 1972. Group Process and Productivity. Academic Press,
New York.

Teasley, S. D., L. A. Covi, M. S. Krishnan, J. S. Olson. 2002. Rapid
software development through team collocation. IEEE Trans.
Software Engrg. 28(7) 671–683.

Thompson, J. 1967. Organizations in Action. McGraw-Hill, New
York.

Van de Ven, A. H., L. A. Delbecq, R. J. Koenig. 1976. Determinants
of coordination modes within organizations. Amer. Sociol. Rev.
41(April) 322–338.

Waller, M. J. 1999. The timing of adaptive group responses to non-
routine events. Acad. Management J. 42(2) 127–137.

Walz, D. B., J. J. Elam, B. Curtis. 1993. Inside a software design
team: Knowledge acquisition, sharing, and integration. Comm.
ACM 36(10) 63–77.

Watson, D., T. Finholt. 1986. Measurement of group participation
patterns. Working paper, Carnegie Mellon University, Pittsburgh,
PA.

Wegner, D. 1995. A computer network model of human transactive
memory. Soc. Cognition 13(3) 319–339.

Weick, K., K. Roberts. 1993. Collective mind in organizations:
Heedful interrelating on flight decks. Admin. Sci. Quart. 38(3)
357–381.

Wood, R. E. 1986. Task complexity: Definition of the construct.
Organ. Behav. Human Decision Processes 37(1) 60–82.

Xia, W., G. Lee. 2005. Complexity of information systems devel-
opment projects: Conceptualization and measurement develop-
ment. J. Management Inform. Systems 22(1) 45–83.






