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This article extends the notion of a “big data divide” to describe the asymmetric 

relationship between those who collect, store, and mine large quantities of data, and those 

whom data collection targets. It argues that this key distinction highlights differential 

access to ways of thinking about and using data that potentially exacerbate power 

imbalances in the digital era. Drawing on original survey and interview findings about 

public attitudes toward collection and use of personal information, it maintains that the 

inability to anticipate the potential uses of such data is a defining attribute of data-mining 

processes, and thus of the forms of sorting and targeting that result from them.  
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Between Me and My Data 

 

Contributing to the buzz around “the personal data revolution,” Web founder and knighted new 

media guru Tim Berners-Lee recently issued a plea for Internet users to be able to access their personal 

data. All people should have the resources for data-mining themselves, he proclaimed, since “My 

computer has a great understanding of my state of fitness, of the things I’m eating, of the places I’m at. 

My phone understands from being in my pocket how much exercise I’ve been getting and how many stairs 

I’ve been walking up and so on” (Katz, 2012, para. 3). Echoing a well-worn set of claims about the power 

of machines to know ourselves better than we do (e.g., Gates, 1995, on software agents or Negroponte, 

1996, on digital butlers), Berners-Lee portrayed the database as a personal-service resource: “If my 

computer understands all that, then it’s in a position to be very valuable to help me run my life, you know, 

to guess what I need next, to fill in a lot of the context . . . to guess what I want to read in the morning” 

(Katz, 2012, para. 1, embedded recording).  
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Of course, Google News and any number of aggregators and services are already hard at work 

providing these kinds of services, without users needing to get involved or reclaim access to their data 

trails. Berners-Lee’s point, however, is that personal devices might usefully combine data from different 

social-networking “silos” and other applications and devices, since these form a personal informational 

nexus where all types of different data rub shoulders (a personal NSA, as it were):  

 

There are no programmes that I can run on my computer which allow me to use all the 

data in each of the social networking systems that I use plus all the data in my calendar 

plus in my running map site, plus the data in my little fitness gadget and so on to really 

provide an excellent support to me. (Katz, 2012, para. 4)  

 

Berners-Lee is bemoaning a growing separation of people from their data that characterizes the 

lives of active users of interactive devices and services—a form of data divide not simply between those 

who generate the data and those who collect, store, and sort it, but also between the capabilities available 

to those two groups. Berners-Lee challenges one aspect of that divide: If we generate data that is 

potentially useful to us, he reasons, shouldn’t we be able to access it and put it to use? Why not overcome 

this separation between users and their data, and with it the separation between the different data silos 

we generate on various devices and platforms? 

 

Surely he has a point, but it raises a further one: Even if users had such access, what individuals 

can do with their data in isolation differs strikingly from what various data collectors can do with this same 

data in the broader context of everyone else’s data. To take a familiar example, Berners-Lee mentions 

customized news delivery as one possible benefit of self-data-mining: if a computer knows what its users 

have read in the past, it might be able to predict which news stories will interest them in the future (this 

is, of course, an echo of Negroponte’s [1996] “Daily Me,” and perhaps also his “digital butler”). But online 

news aggregators take into account not only one’s own interest patterns (surely not formed in isolation) 

but also those of everyone else about whom they collect data. This data trove enables them to engage in 

various forms of collaborative filtering—that is, to consider what the other people who share one’s 

interests are also interested in.  

 

Generalizing this principle from the perspective of data mining, it is potentially much more 

powerful to situate individual behavior patterns within the context of broader social patterns than to rely 

solely on the historical data for a particular individual. Put somewhat differently, allowing users access to 

their own data does not fully address the discrepancies associated with the data divide: that is, differential 

capacities for putting data to use. Even if users had access to their own data, they would not have the 

pattern recognition or predictive capabilities of those who can mine aggregated databases. Moreover, even 

if individuals were provided with everyone else’s data (a purely hypothetical conditional), they would lack 

the storage capacity and processing power to make sense of the data and put it to use. It follows that the 

structural divide associated with the advent of new forms of data-driven sense making will be increasingly 

apparent in the era of “big data.” 

 

To characterize the differential ability to access and use huge amounts of data, this article 

proposes the notion of a big data divide by first defining the term, then considering why such a divide 
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merits attention, and then exploring how this divide might relate to public concern about the collection 

and use of personal information. The sense of powerlessness that individuals express about emerging 

forms of data collection and data mining reflects both the relations of ownership and control that shape 

access to communication and information resources, and growing awareness of just how little people know 

about the ways in which their data might be turned back upon them. Although the following research will 

focus exclusively on personal data—the type of data at the heart of current debates about regulation of 

data collection online—the notion of a big data divide is meant to invoke the broader issue of access to 

sense-making resources in the digital era, and the distinct ways of thinking about and using data available 

to those with access to tremendous databases and the technology and processing power to put them to 

use.  

 

From a research perspective, boyd and Crawford (2011) have noted the divide between “the Big 

Data rich” (companies and universities that can generate or purchase and store large datasets) and the 

“Big Data poor” (those excluded from access to the data, expertise, and processing power), highlighting 

the fact that a relatively small group with defined interests threatens to control the big data research 

agenda. This article extends the notion of a big data divide to incorporate a distinction between ways of 

thinking about data and putting it to use. It argues that “big data mining” privileges correlation and 

prediction over explanation and comprehension in ways that undermine the democratizing/empowering 

promise of digital media. Despite the rhetoric of personalization associated with data mining, it yields 

predictions that are probabilistic in character, privileging decision-making at the aggregate level (over 

time). Moreover, it ushers in an era of “emergent social sorting,” the ability to discern un-anticipatable but 

persistent patterns that can be used to make decisions that influence the life chances of individuals and 

groups. In online tracking and other types of digital-era data surveillance, the logic of data mining, which 

proposes to reveal unanticipated, unpredictable patterns in the data, renders notions such as informed 

consent largely meaningless. Data miners’ claims, discussed in more detail in the following sections, 

reveal that big data holds promise for much more than targeted advertising: It is about finding new ways 

to use data to make predictions, and thus decisions, about everything from health care to policing, urban 

planning, financial planning, job screening, and educational admissions. At a deeper level, the big data 

paradigm challenges the empowering promise of the Internet by proposing the superiority of a post-

explanatory pragmatics (available only to the few) to the forms of comprehension that digital media were 

supposed to make more accessible to the many. None of these concerns fits comfortably within the 

standard privacy-oriented framing of issues related to the collection and use of personal information.  

 

A Big Data Divide 

 

In the sense of standing for more information than any individual human or group of humans can 

comprehend, the notion of big data has existed since the dawn of consciousness. The world and its 

universe are, to anything or anyone with senses, incomprehensibly big data. The contemporary usage is 

distinct, however, in that it marks the emergence of the prospect of making sense of an incomprehensibly 

large trove of recorded data—the promise of being able to put it to meaningful use even though no 

individual or group of individuals can comprehend it. More prosaically, big data denotes the moment when 

automated forms of pattern recognition known as data analytics can catch up with automated forms of 

data collection and storage. Such data analytics are distinct from simple searching and querying of large 
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data sources, a practice with a much longer legacy. Thus, for the purposes of this article, the big data 

moment and the advent of data-mining techniques go hand in hand. The magnitude of what counts as big 

data, then, will likely continue to increase to keep pace with both data storage and data processing 

capacities. IBM, which is investing heavily in data mining and predictive analytics, notes that big data is 

not just about size but also about the speed of data generation and processing and the heterogeneity of 

data that can be dumped into combined databases. It describes these dimensions in terms of the three 

“Vs”: volume, velocity, and variety (IBM, 2012, para. 2).  

 

Big-data mining is omnivorous, in part because it has embarked on the project of discerning 

unexpected, unanticipated correlations. As IBM puts it, “Big data is any type of data—structured and 

unstructured data such as text, sensor data, audio, video, click streams, log files and more. New insights 

are found when analyzing these data types together” (IBM, 2012, para. 9). Data can be collected, sorted, 

and correlated on a hitherto unprecedented scale that promises to generate useful patterns far beyond the 

human mind’s ability to detect or even explain. As data-mining consultant Colleen McCue (2007) puts it, 

“With data mining we can perform exhaustive searches of very large databases using automated methods, 

searching well beyond the capacity of human analysts or even a team of analysts” (p. 23). In short, data 

mining promises to generate patterns of actionable information that outstrip the reach of the unaided 

human brain. In his book Too Big to Know, David Weinberger (2011) describes this “new knowledge” as 

requiring “not just giant computers but a network to connect them, to feed them, and to make their work 

accessible. It exists at the network level, not in the heads of individual human beings” (p. 130). 

 

Such observations trace the emerging contours of a “big data divide” insofar as putting the data 

to use requires access to and control over costly technological infrastructures, expensive data sets, and 

the software, processing power, and expertise for analyzing them. If, as Weinberger puts it, in the era of 

big data “the smartest person in the room is the room,” then much depends on who owns and operates 

the room. The forms of “knowing” associated with big data mining are available only to those with access 

to the machines, the databases, and the algorithms. Assuming for the sake of argument that the big data 

prognosticators (e.g., Mayer-Schönberger & Cukier, 2012) are correct, the era of big data—characterized 

by the ability to make use of databases too large for any individual or group of individuals to 

comprehend—ushers in powerful new capabilities for decision making and prediction unavailable to those 

without access to the databases, storage, and processing power. In manifold spheres of social practice, 

then, those with access to databases, processing power, and data-mining expertise will find themselves 

advantageously positioned compared to those without such access. But the divide at issue is not simply 

between what boyd and Crawford (2011) describe as database “haves” and “have-nots”; it is also about 

asymmetric sorting processes and different ways of thinking about how data relate to knowledge and its 

application. The following sections consider each of these issues in turn. 

 

The Big Data Sort 

 

For those with database access, the ability to capture and mine tremendous amounts of data 

considerably enhances and alters possibilities for engaging in what David Lyon (2002), building on the 

work of Oscar Gandy (1993), has called “surveillance as social sorting”: “a means of verifying identities 

but also of assessing risks and assigning worth” (p. i). Those with access to data, expertise, and 
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processing power are positioned to engage in increasingly powerful, sophisticated, and opaque forms of 

sorting that can be “powerful means of creating and reinforcing long-term [or newly generated] social 

differences” (Lyon, 2002, p. i). The very notion of a panoptic sort is premised on a power imbalance 

between those positioned to make decisions that affect the life chances of individuals (in Gandy’s original 

work, businesses as both employers and marketers) and those subjected to the sorting process. 

Subsequently reflecting on the notion of the “panoptic sort,” Gandy observed that he had “come to 

understand that these decisions are not really based on an assessment of who or what people are, but on 

what they will do in the future. The panoptic sort is not only a discriminatory technology, but it is one that 

depends upon an actuarial assumption” (Gandy, 2005, p. 2). This observation remains as salient as ever 

in the era of data mining and predictive analytics, which, while deploying the rhetoric of personalization, 

also operate at a probabilistic level. In this regard, the assertion that data mining augers a future “in 

which predictions seem so accurate that people can be arrested for crimes before they are committed,” is 

misleading (Kakutani, 2013, para. 14). Predictive analytics is not, despite the hype, a crystal ball. As one 

commentator put it,  

 

When you are doing this kind of analytics, which is called ‘big data,’ you are looking at 

hundreds of thousands to millions of people, and you are converging against the mean. I 

can’t tell you what one shopper is going to do, but I can tell you with 90 percent 

accuracy what one shopper is going to do if he or she looks exactly like one million other 

shoppers. (Nolan, 2012, p. 15)  

 

But the confusion between fortune telling and forecasting is consequential, for decisions made at a 

probabilistic, aggregate level produce effects felt at an individual level: the profile and the person 

intersect. To someone who has been denied health care, employment, or credit, the difference between a 

probabilistic prediction and a certainty is, for all practical purposes, immaterial. 

 

 Social sorting has a long history but comes into its own as a form of automated calculus, as 

Gandy (1993) suggests, in the era of modern bureaucratic rationality. Thus, it is tempting to note the 

historical continuity between big data-driven forms of social sorting and earlier forms of data-based 

decision making, from Taylorist forms of “scientific management” to mid-20th-century forms of redlining 

in the banking, housing, and insurance industries. Raley (2013), for example, has noted that in an early 

account of computer-enabled surveillance, David Lyon (1994) “suggests that the difference made by 

information technologies is one of degree, not of kind, that they simply ‘make more efficient more 

widespread, and simultaneously less visible many processes that already occur’” (Raley, 2013, p. 124). 

However, a qualitative shift in monitoring-based social sorting results from the “emergent” character of 

new data-mining processes, which now can generate un-anticipatable and un-intuitable predictive patterns 

(e.g., Chakrabarti, 2009). That is, their systemic, structural opacity creates a divide between the kinds of 

useful “knowledge” available to those with and without access to the database. 

 

In the following sections, I argue that emerging awareness of forms of asymmetrical power 

associated with both the tremendous accumulation of data and new techniques for putting it to work 

provides a possible explanation for public concern about the collection and use of personal data. Survey 

after survey, including my own (discussed below), has revealed a high level of concern about the 
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commercial collection and use of personal information online. For example, a 2012 Pew study in the 

United States revealed that a majority (65%) of people who use search engines did not approve of the use 

of behavioral data to customize search results, and that more than two-thirds of all Internet users (68%) 

did not approve of targeted advertising based on behavioral tracking (Purcell, Brenner, & Rainie, 2012). 

Another nationwide U.S. survey found that 66% of respondents opposed ad targeting based on tracking 

users’ activities (Turow, King, Hoofnagle, Bleakley, & Hennessy, 2009). In a U.S. study of public reaction 

to proposed “do not track” legislation, 60% of respondents said they would opt out of online tracking, 

given the choice. My own nationwide survey in Australia revealed strong support for do-not-track 

legislation (95% in favor). Well over half of the respondents (56%) opposed customized advertising based 

on tracking, and 59% felt Web sites collect too much information about users. People’s continuing use, 

despite their stated concerns, of services that collect and use their personal information is framed 

sometimes as a “paradox” (e.g., Norberg, Horne, & Horne, 2007), and sometimes as evidence that people 

do not really care as much as the research indicates (e.g., Oppmann, 2010). Based on early results of 

qualitative research on privacy concerns, this article offers an alternative explanation: that people operate 

within structured power relations that they dislike but feel powerless to contest. On a somewhat more 

speculative level, I suggest that there is an emerging understanding on the part of users that the 

asymmetry and opacity of a “big data divide” augurs an era of powerful but undetectable and un-

anticipatable forms of data mining, contributing to their concern about potential downsides of the digital 

surveillance economy. This asymmetry runs deep, insofar as it privileges a form of knowledge available 

only to those with access to costly resources and technologies over the types of knowledge and 

information access that underwrite the “empowering” and democratizing promise of the Internet.2  

 

Theory’s End? 

 

In a much discussed Wired magazine article, Chris Anderson (2008) claimed that the era of big 

data (which he called the “petabyte age”) portended the “end of theory”—that is, the coming irrelevance 

of model-based understandings of the world. As he put it,  

 

This is a world where massive amounts of data and applied mathematics replace every 

other tool that might be brought to bear. Out with every theory of human behavior, from 

linguistics to sociology. Forget taxonomy, ontology, and psychology . . . With enough 

data, the numbers speak for themselves. (Anderson, 2008, para. 8) 

  

This sweeping, manifesto-like claim invites qualification: Surely, statistical models remain necessary for 

developing algorithms, and other sorts of models are needed to shape the use of the information 

generated by increasingly loquacious data. Data scientists have emphasized the importance of domain-

specific expertise in assessing the data that gets fed into mining algorithms and shaping the questions 

that might be put to the data. As McCue (2007) stated in her primer on data mining and predictive 

analytics, “domain expertise is used to evaluate the inputs, guide the process, and evaluate the end 

products within the context of value and validity” (p. 22). Indeed, the term domain expert emerges 

                                                 
2 For a good overview of the celebratory, democratizing rhetoric surrounding the reception of the Internet, 

see Mosco (2004). 
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against the background of data mining’s convergent character to redress both the fact that it is, in a 

sense, content-agnostic, and the resulting tendency “to treat data analysis as a strictly technical exercise” 

(Berry & Linoff, 2001, p. 44).  

 

Moreover, the claim that numbers “speak for themselves” overlooks the broader context of the 

conversation around them (boyd and Crawford met this claim with “a resounding ‘no’” [2011, p. 4]). 

Patterns may emerge from the data, but their relevance or usefulness depends heavily on the questions 

they address, which in turn depend on who is asking. One thing data cannot do is set the agenda. 

Anderson’s version of big data is an instrumental one abstracted from broader issues of values and goals 

(questions of social justice, democratic commitments, etc.)—the very issues that the existing bodies of 

theory sidelined by Anderson are needed to address. Anderson’s article is simply a quick-hit magazine 

piece, but its failure to consider the larger context in which large, for-profit entities (and even 

governments, which, it turns out, piggyback on these databases) collect, own, and control the data is 

telling nonetheless. More bluntly, sidelining the broader question of context and values effectively exempts 

the question of the best uses of the data from the reach of theory and models, leaving it to the 

imperatives of those with access to the databases. This is the real import of the “end of theory” claim.  

 

With these qualifications in mind, the substance of Anderson’s claim is more narrowly 

interpretable: data mining has the ability to generate actionable information that is both unpredictable and 

inexplicable (neither needing nor generating an underlying explanatory model). For example, the era of 

data mining and “micro-targeting” has renewed the salience of a bit of political wisdom discovered early in 

the 1970s by Republican political consultants in the United States: “Mercury owners were far more likely 

to vote Republican than owners of any other kind of automobile” (Gertner, 2004, para. 12). As one 

consultant put it, “We never had the money or the technology to make anything of it . . . but of course 

they do now” (ibid.).  

 

This kind of inductive correlation, which is relatively easy to generate through data mining, 

provides predictive power and actionable information but little in the way of explanation. Meanwhile, those 

interested in using the information for electioneering purposes do not particularly care about any 

underlying explanation, should there be one. As Anderson (2008, para. 8) pointed out, “Who knows why 

people do what they do? The point is they do it, and we can track and measure it with unprecedented 

fidelity.”  

 

A defining attribute of this kind of knowledge is the replacement of explanation and causation 

with correlation and prediction. What is “known” is not an underlying cause or explanation but rather a set 

of probabilistic predictions. Data mining promises to unearth increasingly unpredictable (in the sense of 

not being readily anticipatable) and otherwise indiscernible patterns by sorting through much larger data 

sets—indeed, the goal of data mining is to detect patterns that are not intuitively available to the unaided 

human eye or mind. That is, the goal is, by definition, to extract non-predictable patterns that emerge 

only via automated processing of data sets that are too large to make sense of otherwise. As one data-

mining textbook observed, “as the world grows in complexity, overwhelming us with the data it generates, 

data mining becomes our only hope for elucidating the patterns that underlie it” (Chakrabarti, 2009, p. 

32). Perhaps unsurprisingly, considering commercial databases’ central role in its development, the goals 
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of data mining are often—although not exclusively—portrayed in terms of competitive advantage. “Data 

mining is defined as the process of discovering patterns in data. The process must be automatic or (more 

usually) semiautomatic. The patterns discovered must be meaningful in that they lead to some advantage, 

usually an economic advantage” (Chakrabarti, 2009, p. 27).  But numerous other types of advantages are 

conceivable. McCue’s (2007) textbook on predictive policing frames the goal in terms of national security 

and military advantage: “If knowledge is power, then foreknowledge [via predictive analytics] can be seen 

as battlespace dominance or supremacy” (p. 48). MIT’s big data guru Alex Pentland, who coined the term 

“reality mining” to describe the breadth and depth of new forms of data capture, anticipates that insights 

gleaned from the database will help create a more healthy, secure, and efficient world for all: 

  

For society, the hope is that we can use this new in-depth understanding of individual 

behaviour to increase the efficiency and responsiveness of industries and governments. 

For individuals, the attraction is the possibility of a world where everything is arranged for 

your convenience—your health checkup is magically scheduled just as you begin to get 

sick, the bus comes just as you get to the bus stop, and there is never a line of waiting 

people at city hall. (Pentland, 2009, p. 79)  

 

Other benefits could involve new forms of transparency that make various kinds of public records available 

so as to hold public officials and private entities more accountable.  

 

But even these salutary scenarios belie the “leveling” promise of networked digital technology. 

The era of big data mining concentrates a particular technique for generating actionable information (to be 

used for good or ill) in only a few hands, for the specific purpose of gaining some kind of advantage.3 

Tellingly, it posits a form of knowing that allegedly renders obsolete or outdated the very model of 

Internet empowerment that was supposed to help hold entrenched forms of power accountable by 

increasing access to forms of knowledge that allowed people to understand the world around them.4 This 

is the thrust of Anderson’s account of “the end of theory”: that understanding the world through the 

careful, judicious, and informed study of available information is, for a growing range of applications, 

obsolete in the petabyte era, which promises to unearth powerfully useful patterns from bodies of 

information that are too large for a single person or group of people to make sense of. At the very 

moment that the new technology enhances access to traditional forms of understanding and evidence, 

they are treated as ostensibly outdated. 

 

Even if Anderson is overstating the case and understanding remains an important aspect of 

knowledge acquisition in the digital era, the point remains: The few will have access to useful forms of 

“knowledge” that provide an advantage of some kind and that are not just unavailable to the vast majority 

but incomprehensible, in the sense described by Weinberger (2011). This knowledge is unpredictable and 

inexplicable in the conventional sense (as in the Mercury example: a correlation without an underlying 

                                                 
3 Big data should not be understood as a static concept, for as more people gain access to data-mining 

technology, still “bigger” data will remain beyond their reach, available only to those with the resources to 

support the latest technology and the largest databases.  
4 For a discussion of the promise of Internet empowerment, see Andrejevic (2007, pp. 15–21). 
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explanation) and therefore opaque to those without access to the database. Thus, individual users have no 

way to anticipate fully how information about them might prove salient for particular forms of decision 

making, including, for example, whether they might be considered a security risk, a good or bad job 

prospect, a credit risk, or more or less likely to drop out of school.. Consider, for instance, the finding that 

“people who fill out online job applications using browsers that did not come with the computer . . . but 

had to be deliberately installed (like Firefox or Google’s Chrome) perform better and change jobs less 

often” (“Robot Recruiters,” 2013, para. 2). The finding is unexplained and unlikely to be anticipated by the 

applicants themselves, but it can significantly affect their lives nevertheless. As this example suggests, the 

forms of social sorting associated with big data mining will range far beyond the marketing realm, feeding 

into the decision-making processes of those with access to the information it provides and thereby 

allowing them to affect the life chances of others in increasingly opaque but significant ways.  

 

Whereas it may still be possible to intuitively grasp the link between, for example, a particular 

brand of car and a political preference, the promise of data mining is to unearth correlations beyond the 

realm of such imagining. Reverse engineering an algorithmic determination can require as much expertise 

as generating it in the first place, and the results may have no direct explanatory power. When correlation 

displaces causality or explanation, the goal is to accumulate as comprehensive and varied a database as 

possible to generate truly surprising, non-intuitive results. Perhaps a particular combination of eating 

habits, weather patterns, and geographic location correlates with a tendency to perform poorly in a 

particular job or susceptibility to a chronic illness that threatens employability. There may not be any 

underlying explanation beyond the pattern itself. 

 

The basis for the kind of sorting envisioned via big data mining is likely to become increasingly 

obscure in direct proportion to the size and scope of the available data and the sophistication of the 

techniques used to mine it. At a recent meeting of the Organisation for Economic Co-operation and 

Development, one participant observed that data mining entails the loss of “a degree of transparency in 

why computers make the decisions they do” (Cukier, 2013, para. 6). According to the participant, who is 

CEO of a data-mining company:  

 

There are machines that learn, that are able to make connections that are much, much 

finer than you can see and they can calibrate connections between tons and tons of 

different facets of information, so that there is no way you as a human can understand 

fully what is going on there. (J. Haesler, personal communication, February 26, 2013)  

 

To note these characteristics of data mining is not to discount the potential benefits of its anticipated 

benevolent uses. Yet the shadow of rationalization betokens asymmetrical control: a world in which people 

are sorted at important life moments according to genetic, demographic, geo-locational, and previously 

unanticipated types of data in ways that remain opaque and inaccessible to those who are affected. In 

some instances, this is surely desirable: when, for example, a medical intervention is triggered just in 

time to avoid more severe complications. At the same time, it is easy to imagine ways in which this type 

of pre-emptive modelling—what William Bogard (1996, p. 1) has called “the simulation of surveillance”—

can be abused. Imagine, for example a world in which private health insurers mine client data in an 

attempt to cancel coverage just in time to avoid having to cover major medical expenses. 
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What People Talk About When They Talk About Privacy 

 

 The apparent contradictions in public attitudes toward personal-data collection resolve somewhat 

when viewed against this account of the big data divide and its defining attributes. Those who judge 

people solely by their actions may conclude, for example, that, “the average American finds a very healthy 

acceptable balance between privacy and convenience, they give up some privacy and get a lot of 

convenience” (Oppmann, 2010, para. 11). This framing of the exchange assumes people are aware of the 

terms of the trade-off and it construes acquiescence to pre-structured terms of access as tantamount to a 

ready embrace of those terms. On closer examination, such assumptions fall short. The notion of informed 

consent is a vexed one in the online context, partly because few people read the terms of use they agree 

to upon joining or signing in. Research indicates that the vast majority of users only skim privacy policies 

or skip them altogether (e.g., “Regulators Demand,” 2009; Turow, Mulligan, & Hoofnagle, 2007), a fact 

that might be taken as evidence that people do not care about privacy, despite high levels of stated 

concern and the proliferation of technologies for data capture. A more plausible explanation, based on my 

research on collection and use of personal information in Australia, is a perceived lack of options combined 

with lack of knowledge about possible uses of personal information and the absence of any discernible 

negative impact of these uses (e.g., job applicants are likely unaware that their choice of browser might 

decide whether they are hired). 

 

Particularly striking in my research has been respondents’ expressed sense of powerlessness vis-

á-vis the arrangements that structure the collection and use of personal information. Despite the 

persistent focus on privacy issues in both academic research and popular press coverage, privacy arguably 

takes a backseat to an underlying sense of powerlessness. As one focus group respondent said (eliciting 

expressions of general assent in the group), “My biggest thing from loss of privacy isn’t about other 

people knowing information about you but kind of being forced or bribed to share your information” 

(female, 22). In other words, Google may be misapprehending users’ concerns when it defends its data 

scanning practices with the assurance that “no humans read your email or Google account information” 

(Byers, 2013, para. 6). Users’ concerns are over the very fact that it collects this information for allegedly 

powerful uses that are not fully understood. 

 

The focus group was one of three devoted to discussing the results of a nationwide telephone 

survey of 1,100 people about Australians’ attitudes toward the collection and use of their personal 

information.5 The survey results paralleled research in other countries indicating a high level of concern 

                                                 
5 These survey findings are based on a national telephone survey conducted with N = 1,106 adults across 

Australia between November 17 and December 14, 2011. Managed by the Social Research Centre in 

Melbourne, the project sourced respondents through random-digit phone number generation for landlines 

and mobile phones. The final sample consisted of 642 surveys taken via landline numbers and 464 taken 

via mobile numbers. Reported data were proportionally weighted to adjust for design (chance of 

selection), contact opportunities (mobile only, landline, or both), and demographics (gender, age, 

education, and state). A complete summary of the findings and methodology is available online at 

www.cccs.uq.edu.au/personal-information-project. The survey was followed up by an ongoing series of 

interviews and focus group discussions. As of this writing, 27 structured interviews were conducted at 

http://www.cccs.uq.edu.au/personal-information-project
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about the collection and use of personal information: 59% of respondents said websites collect too much 

information about people.6 They also revealed a very high level of support for stricter controls on 

information collection, including a do-not-track option (92% support), a requirement to delete personal 

data upon request (96% support), and real-time notification of tracking (95% support).7 Well over half of 

the respondents (56%) said they opposed customized advertising based on tracking. The survey results 

also indicated that people are palpably aware that they know little about how their information is used: 

73% of respondents said they needed to know more about the ways websites collect and use their 

information.8  

 

These findings represent a particular type of “big data divide,” not between researchers with 

access to the data and those without, but between sorters and “sortees”—that is, not between those who 

comprehend the correlations and those who do not, but between those who are able to extract and use 

un-anticipatable and inexplicable (as described above) findings and those who find their lives affected by 

the resulting decisions. This formulation can aid consideration of the ways that the post-survey findings 

from the follow-up focus groups challenge the dominant framing of issues in contemporary discussions of 

privacy. One repeatedly mobilized frame is perhaps best summed up by Eric Schmidt’s notorious 

observation: “If you have something that you don’t want anyone to know, maybe you shouldn’t be doing it 

in the first place” (and his subsequent, related assurance that “if you don’t have anything to hide, you 

have nothing to fear”) (Bradley, 2012, para. 3; “Google CEO on Privacy,” 2010, para. 1). Gmail’s role in 

                                                                                                                                                 
three sites across Australia (Melbourne, Sydney, and Brisbane). Recruited randomly in public spaces for 

30- to 45-minute discussions, respondents were screened to include only experienced Internet users. The 

preliminary interview sample skews young and female, consisting of 19 female respondents and 8 male 

respondents, all between the ages of 19 and 37. As the project develops, respondents will be selected to 

counter this skew. Focus group participants were similarly recruited in public spaces at the three research 

sites and received a $20 iTunes gift card to participate in a 50-minute group discussion. A similar skew 

applies to the focus group participants: 16 women and 6 men, ages 20–31. The focus group structure was 

tested on students in an undergraduate seminar, and some of their comments were included.  
6 Actual survey question: “Thinking now about the personal information gathered by ONLINE companies 

about their consumers, would you say they gather too much, about the right amount or not enough 

information?” 
7 Survey questions:  

  Do you think:  

1.  There should be a law that requires websites and advertising companies to delete all 

stored information about an individual, if requested to do so?  

2.  There should be a law requiring Web sites and applications to provide a “do-not-track” 

option that would prevent them from gathering information about people?  

3.  There should be a law requiring companies to notify people at the time when they collect 

data about them online? 
8 Survey question: “How would you describe your understanding of the ways in which companies collect 

and use the information they gather about people online? Do you feel that you already know as much as 

you need to know about what companies do in this regard or need to know more about what companies 

do in this regard?” 
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the downfall of U.S. General Petraeus lent these remarks a certain salience, but they do not reflect the 

concerns of most respondents, who emphasize that whereas much of the information they share (and that 

is collected about them) is mundane, they still dislike being compelled to share it. 

 

One focus group participant, for example, used just one word in response to concerns about the 

collection and use of personal information: “powerless.” Several others in the seven-person discussion 

group indicated they had also written down “powerless” in their discussion notes. Another participant 

chimed in,  

 

You just feel out of control of what people can know about you. It reinforces what the 

world has come to. I know that in general you share a lot more than you used to, we’re 

used to that. But then I still feel powerless. (male, 21)  

 

The focus group participants repeatedly invoked a feeling of asymmetry that paralleled this sense of 

powerlessness. As one respondent maintained in a conversation touching on e-mail and social networking: 

“It’s not fair, it’s not transparent. It’s funny because Facebook is supposed to be all about transparency, 

and they’re the ones who aren’t transparent at all” (female, 31). Another respondent explained how this 

sense of powerlessness influenced her decision not to read privacy policies:  

 

I just click agree, because what else can I do? I think that frustration sometimes just 

translates into: “I won’t even think about it, because what can I do?” It [Facebook] 

becomes part of how you connect with people. It’s really useful for your career, for your 

choices in life. It doesn’t mean you can’t live without it, but living with it becomes 

important. (female, 29) 

 

Most respondents expressed concern and frustration with the online collection of information 

about them, but a few said they were unconcerned because there was nothing they could do about it. As 

one focus group participant put it, 

 

I don’t see it as a threat . . . probably because I don’t know much about it. . . . I can’t 

see it affecting me in my everyday life but if you tell me about online privacy . . . then 

I’ll be thinking about it all the time. I’m better off not knowing about it in the first place. 

(male, 22)  

 

Significantly, even respondents who expressed concern about data collection were vague about actual, 

perceived, or anticipated harm. When pressed on the concrete content of their concern, respondents 

tended to fall back, not particularly confidently, on a familiar litany of well-covered privacy concerns: the 

threat of identity theft or fraud and distaste for data-driven target marketing, which some equated with a 

limiting form of stereotyping. As one respondent put it,  

 

It kind of pushes you and says who you are and what you’d like. . . . At the end of the 

day you do have your right to choose, but this kind of enforces an idea of what you 
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should be choosing and limits what it is you can choose from. . . . You either work within 

that stereotype or they will create another stereotype for you. (female, 25)  

 

Overall, concern about actual harms came across less vociferously than did frustration over a 

sense of powerlessness in the face of increasingly sophisticated and comprehensive forms of data 

collection and mining. Focus group participants generally agreed with responses emphasizing that this 

sense of powerlessness extended to their lack of knowledge over how personal data might be used. As 

one respondent admitted, “We really don’t know where things collected about us go—we don’t understand 

how they interact in such a complex environment” (female, 22). Interview respondents and focus group 

participants alike noted the seemingly endless appetite for personal data: “It’s not just what you want—

it’s where you are, what you do. It’s everything. You’re not free any more. You’re just a slave of these 

companies” (male, 22). This may come across as hyperbolic, but nonetheless noteworthy is the stark 

contrast between this response and the rhetoric of freedom, empowerment and convenience that has long 

underpinned the promotion of the online economy. The contrast highlights the challenge posed by the 

power asymmetries ushered in by big data mining. 

 

Dimensions of the Divide 

 

This article’s analysis suggests that the sense of powerlessness expressed by the focus group 

respondents operates in at least two dimensions: that of ownership and control over information and 

communication resources, and that of different approaches to knowledge-based decision making. People 

are palpably aware that powerful commercial interests shape the terms of access that extract information 

from them: they must choose either to accept the terms on offer or to go without resources that in many 

ways are treated as utilities of increasing importance in their personal and professional lives. However—

and this is an interpretive, speculative claim—the very vagueness (but vociferousness) of their concerns 

about information collection may reflect the structural gap in the big data divide: the fact that users of big 

data rely on the unanticipatable and un-intuitable character of their findings. This vagueness, then, is not 

necessarily an artifact of laziness or ignorance due to users’ failure to educate themselves about the 

technologies they use (or to read legalistic, vague privacy policies) but may be a defining characteristic of 

the data collection strategies to which they are subjected. People can hardly be expected to imagine that, 

for example, their use of a particular browser might render them more or less desirable to employers, or 

to envision all the possible patterns generated by the complex interplay of thousands of variables about 

millions of people, patterns that data-mining strategies have explicitly relegated to the realm of “too big to 

know or predict.” As one respondent put it, “you end up accepting having no privacy without knowing the 

consequences” (male, 32).  

 

If, as Helen Nissenbaum (2009) has compellingly argued, privacy is contextual (because of 

established expectations associated with particular information-collection contexts), then the big data era 

challenges people to develop “contextual” norms for the use of data whose uses can be radically, 

unpredictably decontextualized. Thanks to the proliferation of monitoring technologies (license plate 

readers, smart cameras, drones, RFID scanners, audio sensors, etc.), data scraping continues to extend 

its reach both online and off, so fewer places and activities are likely to be exempt from the logic of the 

big data divide, whereby people are separated from their data and excluded from the process of putting it 
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to use. Overcoming the digital divide means exacerbating the big data divide. Greater access to and 

facility in the use of smartphones and networked laptops, tablets, and computers of one kind or another 

means more data to store, sort, and mine. More comprehensive forms of data mining promise to serve a 

growing variety of decision-making, forecasting, and sorting operations. Whereas many of the applications 

mentioned here are only in their infancy, the pace of change urges the individual to anticipate the social, 

cultural, and political consequences now. Given the impossibility of adjusting expectations to anticipate 

correlations that are by definition unpredictable, people face the daunting prospect of finding ways to limit 

the reach and opacity of emerging forms of social sorting and discrimination. This is the challenge of the 

big data era.  
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